期刊文献+

海洋表层温度剖面数值模拟 被引量:1

A numerical simulation of near-surface ocean temperature
下载PDF
导出
摘要 遥感测量海水表面温度(SST)需用海表面以下实测温度资料加以校正,由于长时间大范围进行海洋表层海水垂向温度剖面野外观测非常困难,建立经有限资料验证的数值模型十分重要。文章基于美国加利福尼亚湾3组船载光学实验的气象及海温资料,考虑太阳热辐射作用与海表面冷温层效应,建立了一个海表下20m深度范围内水温剖面演变的数值模型。通过冷温层计算合理加密了表层网格,使数值模型更准确地估计海表散热作用。计算结果与野外实测海温资料对比显示,海表剖面测试仪(SkinDeEP)未能准确定位和捕捉海表冷温层,实验方法有待改进。整合模型能准确描述海温剖面的演变趋势,在近海表20cm深度内,特别是与遥感SST相关的近海表1cm深度内,模拟结果优于无本皮肤层模型的计算结果。 The vertical water temperature profile in the upper few meters of the ocean is essential for calibrating the seasurface temperature (SST) from remotely sensed surface radiation fields. Also, a reliable way to predict the sea watertemperature profiles is necessary for many oceanographic applications, since high temporal and spatial coverage of surfaceprofile observations are impractical. Based on several full sets of meteorological data and observed near-surface oceantemperature, measured in the Gulf of California during the Marine Optical Characterization Experiment (MOCE-5), anumerical model is made to simulate the vertical temperature profiles for the upper 20 meters of the ocean, considering boththe sun’s radiation and the cool skin effects. The simulated cool skin thickness can refine meshes near sea surface, because ofwhich, the model can better estimate the sea surface cooling effect. Comparing the simulation results and observed data, theresult shows that SkinDeEP didn’t catch the cool skin layer, and the experiment method needs to be refined. The computationresults are in reasonable agreement with the observed vertical temperature profiles in the ocean, and better simulation withinthe top 20 cm especially 1 cm is made by the model with Xin-Yang cool skin layer model.
出处 《热带海洋学报》 CAS CSCD 北大核心 2014年第6期31-40,共10页 Journal of Tropical Oceanography
基金 国家自然科学基金资助项目(40776007)
关键词 海水温度剖面 数值模拟 冷温层效应 遥感海温 sea water temperature profile numerical simulation cool skin effect sea surface temperature remote sensing
  • 相关文献

参考文献33

  • 1BRUTSAERT W. 1975. Roughness length for water-vapor,sensible heat, and other scalars[J]. Journal of the AtmosphericSciences, 32(10): 2028–2031.
  • 2CASTRO S L, WICK G A, EMERY W J. 2003. Furtherrefinements to models for the bulk-skin sea surface temperaturedifference[J]. Journal of Geophysical Research: Oceans, 108(C12): 3377-3394.
  • 3DANCKWERTS P V. 1951. Significance of liquid-film coefficientsin gas absorption[J]. Industrial and Engineering Chemistry,43(6): 1460-1467.
  • 4DASH P, IGNATOV A, MARTIN M, et al. 2012. Group for HighResolution Sea Surface Temperature (GHRSST) analysis fieldsintercomparisons part 2: near real time web-based level 4 SSTquality monitor (L4-squam)[J]. Deep Sea Research Part Ⅱ,77-80(Si): 31-43.
  • 5DAVIS R E, DESZOEKE R, HALPERN D, et al. 1981. Variabilityin the upper ocean during mile. 1. the heat and momentumbalances[J]. Deep Sea Research Part A: OceanographicResearch Papers, 28(12): 1427-1451.
  • 6DONLON C, ROBINSON I, CASEY K S, et al. 2007. The globalocean data assimilation experiment high-resolution sea surfacetemperature pilot project[J]. Bulletin of the American MeteorologicalSociety, 88(8): 1197-1213.
  • 7FAIRALL C W, BRADLEY E F, GODFREY J S, et al. 1996.Cool-skin and warm-layer effects on sea surface temperature[J]. Journal of Geophysical Research: Oceans, 101(C1):1295-1308.
  • 8GRASSL H. 1976. The dependence of the measured cool skin ofthe ocean on wind stress and total heat flux[J]. BoundarylayerMeteorology, 10(4): 465-474.
  • 9HASSE L. 1971. The sea surface temperature deviation and theheat flow at the sea-air interface[J]. Boundary-layer Meteorology,1(3): 368-379.
  • 10JENKINS A D, WARD B. 2005. A simple model for the short-timeevolution of near-surface current and temperature profiles[J].Deep Sea Research Part Ⅱ, 52(9-10): 1202-1214.

同被引文献11

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部