期刊文献+

Ni-CeO_2/SBA-15电催化甲苯水蒸气重整的实验研究 被引量:3

Electric Current Enhanced Catalytic Steam Reforming of Toluene with Ni-CeO_2/SBA-15 Catalyst
下载PDF
导出
摘要 以甲苯为生物质气化焦油的模型化合物,以Ni-Ce O2/SBA-15为催化剂,在自行搭建的固定床电化学催化(电催化)水蒸气重整实验台上进行了甲苯的电催化水蒸气重整实验,考察了电流强度、反应温度和水/碳摩尔比(S/C)对甲苯转化率、产气组成的影响,并对该催化剂进行了长时间活性测试。结果表明,电流的引入可以显著提高催化剂对甲苯的转化效率;在电流为4 A、反应温度为800℃、S/C为3时,甲苯转化率可以达到94.7%。 Electric current enhanced catalytic steam reforming of toluene, which was selected as the model compound ofbiomass gasification tar, was performed by a fixed-bed electrochemical catalytic steam reforming experimental set usingthe Ni-CeO2/SBA-15 catalyst. Experiments were performed to reveal the effects of several factors on the tolueneconversion and product gas composition, including the electric current intensity, reaction temperature and steam/carbon(S/C) ratio. Moreover, stability test of the catalyst was conducted over a long experimental period. The results indicatedthat the presence of the electric current enhanced the catalytic activity remarkably. The toluene conversion reached as highas 94.7% under the electric current of 4 A, temperature of 800 °C and S/C ratio of 3.
出处 《新能源进展》 2014年第6期407-412,共6页 Advances in New and Renewable Energy
基金 国家科技支撑计划(2012BAD30B01) 国家自然科学基金(51276062) 中央高校基本科研业务专项资金(2014ZD17)
关键词 电催化重整 焦油 甲苯 Ni-CeO2/SBA-15 electrochemical catalytic reforming tar toluene Ni-CeO2/SBA-15
  • 相关文献

参考文献23

  • 1Shen Y, Yoshikawa K. Recent progresses in catalytic tarelimination during biomass gasification or pyrolysis-Areview[J]. Renewable and Sustainable Energy Reviews,2013, 21: 371-392.
  • 2Font Palma C. Modelling of tar formation and evolutionfor biomass gasification: A review[J]. Applied Energy,2013, 111: 129-141.
  • 3Tao J, Zhao L, Dong C, et al. Catalytic steam reformingof toluene as a model compound of biomass gasificationtar using Ni-CeO2/SBA-15 catalysts[J]. Energies, 2013,6(7): 3284-3296.
  • 4Koike M, Ishikawa C, Li D, et al. Catalytic performanceof manganese-promoted nickel catalysts for the steamreforming of tar from biomass pyrolysis to synthesisgas[J]. Fuel, 2013, 103: 122-129.
  • 5Guan G, Kaewpanha M, Hao X, et al. Steam reforming oftar derived from lignin over pompom-like potassiumpromotediron-based catalysts formed on calcined scallopshell[J]. Bioresource Technology, 2013, 139: 280-284.
  • 6Virginie M, Adánez J, Courson C, et al. Effect ofFe–olivine on the tar content during biomass gasificationin a dual fluidized bed[J]. Applied Catalysis B:Environmental, 2012, 121: 214-222.
  • 7González J F, Román S, Engo G, et al. Reduction of tarsby dolomite cracking during two-stage gasification ofolive cake[J]. Biomass and Bioenergy, 2011, 35(10):4324-4330.
  • 8Yu Q Z, Brage C, Nordgreen T, et al. Effects of Chinesedolomites on tar cracking in gasification of birch[J]. Fuel,2009, 88(10): 1922-1926.
  • 9Shen Y, Zhao P, Shao Q, et al. In-situ catalyticconversion of tar using rice husk char-supportednickel-iron catalysts for biomass pyrolysis/gasification[J].Applied Catalysis B: Environmental, 2014, 152-153:140-151.
  • 10Zhang R, Wang H, Hou X. Catalytic reforming of tolueneas tar model compound: Effect of Ce and Ce–Mgpromoter using Ni/olivine catalyst[J]. Chemosphere,2014, 97: 40-46.

二级参考文献63

  • 1SCOTT J F,RAUJO C A P D.Freeoelectric memories [J].Science,1989,246:1 400-1 406.
  • 2PARK B H,KANG B S,NOH T W,et al.Lanthanum-substituted bismuth titanate for use in non-volatile memories [J].Nature,1999,401:682-684.
  • 3NOGUCHI Y,MIYAYAMA M.Large remnant polarization of vanadium-doped Bi4 Ti3 O12 [J].Appl Phys Lett,2001,78(13):1 903-1 905.
  • 4SUBBARAO E C.Ferroelectricity in Bi4 Ti3 O12 and its solid solutions [J].Phys Rev,1961,122(3):804-807.
  • 5MASUDA Y,MASUMOTO H,BABA A,et al.Crystal growth,dielectric and polarization reversal properties of Bi4Ti3O12 single crystal [J].Jpn J Appl Phys,1992,31:3 108-3 112.
  • 6CHOU U,JANG M G,KIM M G,et al.Layered perovskites with giant spontaneous polarization for nonvolatile memories [J].Phys Rev Lett,2002,89(8):87 601-87 604.
  • 7MACEDO Z S,HERNANDES A C.Laser sintering of Bi4Ti3O12 ferroelectric ceramics [J].Mater Lett,2002,55:217-220.
  • 8WITERSRL,THOMPSONJGRL,THOMPSON J D,etal.The crystal chemistry underlying ferroelectricity in Bi4 Ti3 O12,Bi3TiNbO9,and Bi2WO6[J].J Solid State Chem,1991,94:404-417.
  • 9NOGUCHI Y,MIWA I,GOSHIMA Y,et al.Defect control for large remnant polarization in bismuth titanate ferroelectrics-doping effect of higher-valent cations [J].Jpn J Appl Phys,2000,39:L1 259-L1 262.
  • 10MIYAYAMA M,YI I S.Electrical anisotropy in single crystals of Bi-layer structured ferroelectrics [J].Ceram Int,2000,26:529-533.

共引文献3

同被引文献39

  • 1国家环境保护总局《水和废水监测分析方法》(第四版)编委会.水和废水监测分析方法[M].北京:中国环境科学出版社,2002:210-213.
  • 2Mohammad A. Biomass gasification gas cleaning for downstream applications: A comparative critical review[J]. Renewable and Sustainable Energy Reviews, 2014, 40: 118-132.
  • 3Shen Y, Yoshikawa K. Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis-A review[J]. Renewable and Sustainable Energy Reviews, 2013, 21: 371-392.
  • 4Leung D Y C, Yin X L, Wu C Z. A review on the development and commercialization of biomass gasification technologies in China[J]. Renewable and Sustainable Energy Reviews, 2004, 8: 565-580.
  • 5Mehta V, Chavan A. Physico-chemical treatment of tar-containing wastewater generated from biomass gasification plants[J]. World Academy of Science, Engineering and Technology, 2009, 57:161-168.
  • 6Jeswani H, Mukherji S. Batch studies with Exiguobacterium aurantiacum degrading structurally diverse organic compounds and its potential for treatment of biomass gasification wastewater[J]. International Biodeterioration & Biodegradation, 2013, 80: 1-9.
  • 7Liu H B, Chert T H, Chang D Y, et al. Catalytic cracking of tars derived from rice hull gasification over goethite and palygorskite[J]. Applied Clay Science, 2012, 70:51-57.
  • 8Ardizzone S, Bianchi C L, Cappelletti G et al. Photocatalytic degradation of toluene in the gas phase:relationship between surface species and catalyst features[J]. Environmental Science & Technology, 2008, 42: 6671-6676.
  • 9Ahmed S, Rasul M G Martens W N, et al. Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: A review[J]. Water Air Soil Pollut, 2011, 215: 3-29.
  • 10Lu X C, Jiang J C, Sun K, et al. Characterization and photocatalytic activity of Zn2+-TiO2/AC composite photocatalyst[J]. Applied Surface Science, 2011, 258: 1656-1661.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部