期刊文献+

非对称轧制参数对钛钢爆炸复合板结构性能的影响(英文) 被引量:11

Influence of Asymmetric Rolling Parameters on the Microstructure and Mechanical Properties of Titanium Explosive Clad Plate
原文传递
导出
摘要 对钛钢爆炸复合板进行轧制处理,可以得到较薄较宽的复合板。利用光学显微镜、扫描电子显微镜、透射电子显微镜、X射线衍射仪、拉剪实验研究了不同的轧制参数对钛-钢爆炸轧制复合板界面组织特征和性能的影响。结果表明:降低轧前热处理温度或开轧温度,都会提高复合板的界面结合强度。在轧前热处理过程中,由于铁、碳元素的扩散,在界面上形成Ti C和Ti-Fe金属间化合物,使复合板剪切强度下降。然而,在轧制的过程中,这些界面化合物在轧制压力的作用下被压碎,呈弥散分布,阻止界面裂纹的扩展,界面结合强度有所提高,因此,增加轧制压下量可以提高界面的结合性能。 The microstructure and the shear strength of titanium explosive-rolled clad plate at different rolling temperatures and rolling reductions were analyzed. The shear strength was determined by tensile shear test, and the microstructure was observed by optical microscopy, X-ray diffraction, scanning electron microscope and transmission electron microscope. The results show that upon decreasing of starting roiled temperature and pre-heat temperature, the shear strength of the titanium explosive-rolled clad plate increases. During the pre-heat treatment process, the compounds including TiC and Ti-Fe intermetallics are formed at the interface due to diffusion of carbon and iron. These compounds are harmful to intert^acial bonding strength. It is also revealed that the shear strength increases with the increasing of rolled reduction in thickness at any specific temperatures. Under the rolling pressure, the interface shape transforms from a wavy to straight, and the interfacial intermetallic compounds are broken. Big reduction leads to a higher fragmentation degree of the discontinuously distributed intermetallic compounds, which improves the shear strength of the composites.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2014年第11期2631-2636,共6页 Rare Metal Materials and Engineering
关键词 钛钢爆炸复合板 轧制压下量 轧前热处理温度 开轧温度 剪切强度 titanium explosive clad plate rolled reduction in thickness pre-heat temperature starting rolling temperature shearstrength
  • 相关文献

参考文献16

  • 1Zheng Y M. Explosive Welding and Metal Composite and Their Engineering Application[M]. Changsha: Central South University Press, 2002 (in Chinese).
  • 2Nizamettin K. J Mater Proc Technol[J], 2005, 169: 127.
  • 3Aleksander K, Mateusz K, Robert B et al. International Journal of Fatigue[J], 2012(1): 1.
  • 4Palavesamuthu M, Kazuyuki H, Andrei A Deribas et al. Materials Transactions[J], 2006, 47: 2049.
  • 5Fehim F. Mater Design[J], 2011, 32: 1081.
  • 6Manikandana P, Hokamotob K, Fujitac M. Journal of Materials Processing Technology[J], 2008,195: 232.
  • 7Akbari M S AA, Farhadi S P. Mater Design[J], 2009, 30: 459.
  • 8Songa J, Kostkaa A, Veehmayerb M. Materials Science and Engineering A[J], 2011, 528: 2641.
  • 9Wang J Z, Yan X B, Wang W Q. Materials Review[J], 2005, 19: 61 (in Chinese).
  • 10Yan J C, Zhao D S, Wang C W et al. Materials Science and Technology[J], 2009, 25: 914.

同被引文献112

引证文献11

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部