期刊文献+

反复镦压6013型铝合金的组织和性能 被引量:2

Microstructure and Properties of 6013 Type Aluminum Alloy Produced by Cyclic Channel Die Compression Process
原文传递
导出
摘要 以6013型铝合金为试验对象,研究了反复镦压工艺制备细晶材料,消除合金各向异性的可行性。采用金相显微镜,透射电镜研究了6013型铝合金反复镦压对合金组织和性能的影响。结果表明:反复镦压使合金内部产生取向各异、彼此交错的变形带,有利于细化合金组织,经480℃,2 h的退火处理后,合金发生再结晶,合金晶粒等轴化,大小分布均匀,与未反复镦压合金组织相比,晶粒显著细化,减轻了组织各向异性;合金强度随镦压道次的增加,先降低后升高,对镦压后的合金进行T6处理(560℃,2 h+191℃,4 h),反复镦压3道次和12道次合金的硬度分别为1418.5和1503.5 MPa。研究表明:反复镦压工艺可以有效细化晶粒,消除组织各向异性,多道次镦压后,合金强度有所提高。 6013 type aluminum alloy produced by cyclic channel die compression (CCDC) process was investigated to explore whether the fine grain and elimination of anisotropy can be obtained. Microstructures and properties of 6013 type aluminum alloy were tested by optical microscopy (OM), transmission electron microscopy (TEM) and hardness tester. The results indicate that CCDC process can effectively refine the grains and eliminate the anisotropy. Different-orientation, staggered belts are observed, which is conducive to refining the microstrueture when the alloy is subjected to CCDC process. Recrystallization, equiaxed grains, and homogeneous distribution are gotten when the alloy is annealed at 480 ℃for 2 h. The grains are significantly refined and the microstructural anisotropy is reduced compared with the alloy without CCDC. The strength of the alloy decreases first and then increases with increasing the passes of CCDC. The hardness (HV) of the alloy is 1418.5 MPa and 1503.5 MPa compressed by 3 passes and 12 passes, respectively, when the alloy was treated by T6 solution-aging (560 ℃/2 h+191 ℃/4 h). It is shown that the fine grain and elimination of anisotropy can be obtained and the strength would be increased after multi-passes CCDC.
机构地区 江苏大学 南通大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2014年第11期2819-2823,共5页 Rare Metal Materials and Engineering
基金 江苏省工业科技支撑项目(BE2008118) 江苏省普通高校研究生科研创新计划(CXLX12_0620) 南通市科技应用研究计划项目(BK2011010)
关键词 反复镦压 6013 铝合金 各向异性 退火 cyclic channel die compression 6013 aluminum alloy anisotropy anneal
  • 相关文献

参考文献14

二级参考文献42

  • 1刘存玉,莫丽玲,李虹.2618A铝合金锻件T6热处理制度的研究[J].轻合金加工技术,1993,21(10):26-29. 被引量:10
  • 2石凤健,王雷刚,王海龙,汪建敏.等径角挤压工艺对固溶状态CuCrZr合金性能的影响[J].金属热处理,2007,32(1):81-83. 被引量:4
  • 3刘静安 龙金华.-[J].铝加工,1988,(3):7-7.
  • 4王奎民.-[J].轻合金加工技术,1985,(11):23-23.
  • 5G|eiter H. Nanocrystalline materials[J]. Key Eng Mat, 1987,13(1) : 150.
  • 6Hartmann O, Wappling R, Ekstrom M, et al. Positive muons in nanocrystalline transition metals diffusion and magnetic nanostructure[J]. Nanostruetured Materials, 1999,12(6) :943 - 946.
  • 7Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulknanostructured materials from severe plastic deformation[ J ]. Progress in Material Science,2000,45(2):103 - 189.
  • 8Lu K. Nanocrystalline metals crystallized from amorphous solids : Nanocrystallization, structure, and properties[J]. Mater Sci Eng Reports, 1996,16(4) : 161 - 221.
  • 9Ferrasse S, Segal V M. Microstructure and properties of copper and aluminum alloy 3003 heavily worked by equal channel angular extrusion[ J]. Metallurgical and Materials Trasanctions A, 1997,28 : 1047 - 1057.
  • 10Wu Y,Baker I.Experimental study of equal channel angular extrusion[ Jl. Scripta Materilia, 1997,37(4) :437.

共引文献114

同被引文献14

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部