期刊文献+

两步碳化制备纳米WC粉末及其合金性能 被引量:6

Properties of Ultrafine WC-Co Cemented Carbide Prepared from Tungsten Carbide Nanopowders through a Two-Step Carbonization Method
原文传递
导出
摘要 研究了两步碳化工艺对氢还原/碳化制备的纳米WC粉末及其WC-Co合金性能的影响。结果表明,WC粉末的晶粒聚集和异常粗大颗粒主要是由于碳化初期钨颗粒因烧结合并增粗,而钨粉碳化不完全主要是由于碳化后期的温度偏低,利用先低温碳化后高温碳化的两步碳化工艺不仅能够有效抑制纳米颗粒烧结合并增粗,而且可以使钨粉充分碳化,得到颗粒细小、均匀,W2C含量极少的WC粉末;采用1120℃碳化加1180℃碳化的两步碳化工艺制备出的138 nm的WC粉末,W2C含量少于0.5%(质量分数),以其为原料制备的WC-Co烧结体显微组织结构均匀,为超细晶硬质合金,综合性能优良,洛氏硬度HRA高达93.7,抗弯强度高达4380 MPa。 The effects of a two step carbonization method on properties of tungsten carbide nanopowders and the cemented carbides have been studied. It is shown that the grain aggregation and abnormal coarse grains are mainly due to the sintering combination of agglomerated particles of tungsten or tungsten carbide nanopowders during carbonization process and incomplete carbonization is attributed to the low carbonization temperature. The two step carbonization method (the first step carbonization temperature 1120 ℃, and the second step carbonization temperature 1180 ℃) can effectively inhibit the sintcring combination phenomenon between nanoparticles, and can carburize the tungsten nanopowders fully. Therefore homogenous tungsten carbide nanopowders are obtained and the content of W2C of the nanopowders is only 0.5%. Microstruetures of ultrafine WC-Co sintered composites prepared from the powders through the two step carbonization method are uniform; the properties of the alloy are excellent, and the HRA hardness and bending strength are 93.7 and 4380 MPa, respectively
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2014年第11期2841-2846,共6页 Rare Metal Materials and Engineering
基金 国家自然科学基金(50801037 51071082 51271090 51364036) 教育部博士学科点专项基金(20103601110001) 教育部长江学者和创新团队发展计划(IRT0730) 教育部新世纪优秀人才支持计划(NECT-10-0184) 江西省高等学校科技落地计划(12056)
关键词 形貌结构 纳米W 纳米WC 均匀性 两步碳化 morphology structure tungsten nanopowder tungsten carbide nanopowder homogeneity two step carbonization
  • 相关文献

参考文献20

  • 1Farid Akhtar, Islam Humail Set al. International Journal of Refractory Metals & Hard Materials[J], 2007, 25(6): 405.
  • 2Zhang Li, Wang Yuanjie. International Journal of Refractory Metals & Hard Materials[J], 2008, 26(4): 295.
  • 3Fang Zak Z, Wang Xu. Int Journal of Refractory Metals & Hard Materials[J], 2009, 27(2): 288.
  • 4Michalski A, Siemiaszko D. International Journal of Refractory Metals & Hard Materials[J], 2007, 25(2): 153.
  • 5张凤林,朱敏,王成勇.纳米硬质合金进展[J].稀有金属,2002,26(1):54-58. 被引量:31
  • 6佘建芳.德国维迪阿公司超细硬质合金的发展[J].稀有金属与硬质合金,2002,30(2):55-58. 被引量:6
  • 7张立,陈述,刘刚,杨贵彬,黄泽兰,黄伯云,张传福.高性能超细、纳米硬质合金及其制备过程中的关键技术问题[J].材料导报,2005,19(11):4-7. 被引量:21
  • 8WangGang(SE岗),LiHaihua(李海华),HuangZhongwei(黄宗伟)et al.稀有金属材料与工程,2009,38(S1):548.
  • 9ZhangWuzhuang(张武装),GaoHaiyan(高海燕),HuangBoyun(黄伯云).稀有金属材料与工程[J],2007,36(7):1254.
  • 10Bonaehe V, Salvador M D et al. Ceramics International[J], 2011, 37(3): 1139.

二级参考文献72

共引文献121

同被引文献45

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部