期刊文献+

α/β类蛋白折叠中π-π相互作用的特异性

Specificity of π-π Interactions in α/β Protein Folding
下载PDF
导出
摘要 以α/β类蛋白的2种典型折叠类型为研究对象,对205个低相似度蛋白样本中的π-π相互作用进行统计分析.计算结果表明,(α/β)8-barrel折叠中π-π相互作用的分布密度高于经典Rossmann折叠,且在关键的局部区域的差异更加显著;芳香族氨基酸在(α/β)8-barrel结构中更容易形成π-π相互作用;色氨酸对应的3种π-π相互作用组合在(α/β)8-barrel折叠中出现的几率显著高于经典Rossmann折叠;(α/β)8-barrel折叠中π-π相互作用形成复杂π网络的能力强于经典Rossmann折叠.上述结果表明,π-π相互作用在α/β类蛋白的不同折叠类型中存在特异性,其在稳定(α/β)8-barrel结构中的作用强于经典Rossmann折叠. Protein folding study is one of the main ways to investigate structural stability and mechanism of proteins. π-π Interaction has been focused much attention on its role in the stability of protein structure and functions. In this paper, two typical protein folds of α/β protein were selected for the research,π-πinterac-tions of 205 low similarity protein samples were statistically analyzed. The results showed that the distribution density of π-π interactions in (α/β) 8-barrel fold was higher than those of classical Rossmann fold and the difference was more significant in the critical local area, aromatic amino acids easily form π-πinteractions in (α/β) 8-barrel, the threeπ-πinteraction combinations corresponding to Trp appearing in (α/β) 8-barrel were significantly higher than classic Rossmann and (α/β) 8-barrel fold had greater ability to form complex π-net-work than classical Rossmann fold. In a word,π-πinteractions in different folding types of α/β protein exist specificity. π-π Interaction effects the stability of (α/β) 8-barrel stronger than the classical Rossmann.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2014年第12期2674-2679,共6页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:21173014) 北京市自然科学基金(批准号:4112010)资助~~
关键词 (α/β)8·barrel折叠 Rossmann折叠 Π-Π相互作用 π-网络 非经典相互作用 (α/β) 8-Barrel fold Rossmann fold π-π Interaction π-Network Non-classical interaction
  • 相关文献

参考文献25

  • 1Patrick C.R.,Prosser G.S.,Nature,1960,187(4742),1021.
  • 2Epiotis N.D.,Cherry W.R.,Shaik S.,Yates R.,Bernardi F.,Structural Theory of Organic Chemistry,Springer,Berlin Heidelberg,1977,156-189.
  • 3Burley S.K.,Petsko G.A.,Science,1985,229(4708),23-28.
  • 4Tina K.G.,Bhadra R.,Srinivasan N.,Nucleic Acids Res.,2007,35(Suppl.2),W473-W476.
  • 5Zhang H.,Zheng Y.Q.,Guo J.,Wang X.M.,Yang Y.H.,Chem.Res.Chinese Universities,2013,29(6),1110-1114.
  • 6Cotte N.,Balestre M.E.L.,Aumelas A.,Mahe E.,Phalipou S.,Morin D.,Hibert M.,Manning M.,Durroux T.,Barberis C.,Eur.J.Biochem.,2000,267(13),4253-4263.
  • 7Sansom M.S.,Tieleman D.P.,Forrest L.R.,Berendsen H.J.,J.Biochem.Soc.Trans.,1998,26(3),438-443.
  • 8Dong G.,Chakshusmathi G.,Wolin S.L.,Reinisch K.M.,EMBO J.,2004,23(5),1000-1007.
  • 9Salonen L.M.,Ellermann M.,Diederich F.,Angew.Chem.Int.Ed.Engl.,2011,50(21),4808-4842.
  • 10Murzin A.G.,Brenner S.E.,Hubbard T.,Chothia C.,J.Mol.Biol.,1995,247(4),536-540.

二级参考文献4

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部