期刊文献+

含结构惯性载荷作用桁架结构的弯曲应力及其控制

BENDING STRESSES AND THEIR CONTROLS FOR TRUSSES WITH STRUCTURAL INERTIA LOAD
下载PDF
导出
摘要 结构惯性载荷所占成分较大的桁架结构,需考虑其对杆单元弯曲应力的影响及其控制。针对该问题,可用桁架结构分析方法求解杆内轴向应力,再用受横向均布载荷梁的分析方法求解杆内最大弯曲应力,将两者相加以确定杆内最大总应力。继而,采用控制细长比的方法,以控制横向惯性载荷引起的最大弯曲应力,并讨论相应的屈曲条件以确定许用轴向压应力。运用应力比法对多工况下应力约束桁架结构进行最轻化设计,以含惯性载荷作用的3杆和10杆桁架结构优化为例,验证该控制最大弯曲应力方法的必要性与有效性。 When an inertia load constitutes a significant component of the loads in a truss, its effect on the bending stress in a bar element and how to control must be considered. For the problem, the analysis method for trusses was used to solve the axial stresses in the bars. And, the analysis method for a beam with uniformly distributed load is discussed to solve the maximum bending stress in a bar element. The two-component stresses are added to determine the total maximum stress in a bar. Then, it is proposed to use a method for controlling the slenderness ratio, to control the maximum bending stress caused by an inertia load. And, the corresponding buckling conditions are discussed to determine the allowable axial compressive stress. For example, the stress ratio method is used to minimize the truss mass under stress constraints for multiple loadings. And, a three-bar and a tenbar truss with an inertia load are used to verify that the method for controlling the maximum bending stress is necessary and effective.
出处 《机械强度》 CAS CSCD 北大核心 2014年第6期933-938,共6页 Journal of Mechanical Strength
基金 广西壮族自治区科技厅项目(0728013) 广西壮族自治区教育厅科研项目(201106LX422)资助~~
关键词 桁架结构 结构惯性载荷 最大弯曲应力 细长比 应力比法 Trusses Structural inertia load Maximum bending stress Slenderness ratio Stress ratio method
  • 相关文献

参考文献9

  • 1Lee E,James KA,Martins JRRA.Stress-constrained topology optimization with design-dependent loading[J].Structural and Multidisciplinary Optimization,2012,46(5):647-661.
  • 2Lee E,Martins JRRA.Structural topology optimization with designdependent pressure loads[J].Computer Methods in Applied Mechanics and Engineering,2012,233:40-48.
  • 3Qiu Fusheng,Ding Jiaman,Zhang Weiping,et al.Aircraft preliminary design stage Inertia load distribution optimization[J].Procedia Engineering,2012,31:622-626.
  • 4Huang X,Xie YM.Evolutionary topology optimization of continuum structures including design-dependent self-weight loads[J].Finite Elements in Analysis and Design,2011,47(8):942-948.
  • 5Bruyneel M,Duysinx P.Note on topology optimization of continuumstructures including self-weight[J].Structural and Multidisciplinary Optimization,2005,29(4):245-256.
  • 6欧笛声,周雄新.含自重载荷作用下桁架拓扑优化的功射极法[J].工程力学,2011,28(7):136-142. 被引量:2
  • 7Hearn EJ.Mechanics of materials[M].Henry Dream press,1997.46-48.
  • 8Ahrari A,Atai AA.Fully Stressed Design Evolution Strategy for Shape and Size Optimization of Truss Structures[J].2013,Computers&Structures,2013,123:58-67.
  • 9朱朝艳,刘斌,郭鹏飞,张延年.离散变量桁架结构拓扑优化的混合遗传算法[J].机械强度,2004,26(6):656-661. 被引量:8

二级参考文献15

  • 1Nakamura H, Dow M, Rozvany G I N. Optimal spherical cupola of uniform strenght: Allowance for selfweigth [J]. Ingenieur-Archiv, 1981, 51: 159- 181.
  • 2Ansola Rub6n, Canales Javier, Tfirrago Jos6 A. An efficient sensitivity computation strategy for the evolutionary structural optimization (ESO) of continuumstructures subjected to self-weight loads [J]. Finite Elements in Analysis and Design, 2006, 42(14-15): 1220- 1230.
  • 3Yang X Y, Xie Y M, Steven G P. Evolutionary methods for topology optimisation of continuous structures with design dependent loads [J]. Computers and Structures, 2005, 83: 956--963.
  • 4Bruyneel M, Duysinx P. Note on topology optimization of continuum structures including self-weight [J]. Structural and Multidisciplinary Optimization, 2005, 29(4): 245-256.
  • 5Bendsoe M P, Ben-Tal A, Zowe J. Optimization methods for truss geometry and topology design [J]. Structural Optimization, 1994, 7(3): 141 - 159.
  • 6Achtziger Wolfgang, Stolpe Mathias. Global optimization of truss topology with discrete barareas--Part I: theory of relaxed problems [J]. Comput Optim Appl, 2008, 40: 247--280.
  • 7Rozvany G I N. Stress ratio and compliance based methods in topology optimization-A critical review [J]. Structural and Multidisciplinary Optimization, 2001, 21(2): 109-119.
  • 8Stolpe M, Svanberg K. A note on stress-constrained truss topology optimization [J]. Structural and Multidisciplinary Optimization, 2003, 25: 62-64.
  • 9Deuflhard Peter. Newton methods for nonlinear problems: Affine invarianee and adaptive algorithms [M]. Berlin: Springer-Verlag, 2004.
  • 10Zhou M. Difficulties in truss topology buckling constraints optimization with stress and local buckling constraints [J]. Structural Optimization, 1996, 11: 134- 136.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部