期刊文献+

无穷远点处与Schr?dinger算子相关的极细集 被引量:3

Minimally thin sets at infinity with respect to the Schr?dinger operator
原文传递
导出
摘要 本文首先得到了一些新的关于锥中无穷远点处与Schr?dinger算子相关极细集的判定准则,其证明是基于对带有修改测度的Green-Sch位势在无穷远点处渐近行为的估计.接着,刻画了这类极细集的几何性质.最后,通过一个反例来说明,所得几何性质的逆命题并不成立. This paper gives some criterions for minimally thin sets at infinity with respect to the SchrSdinger operator in a cone. Our proofs are based on estimating Green-Sch potential with a positive measure by connecting with a kind of density of the modified measure. Meanwhile, the geometrical property of this minimally thin sets at infinity is also considered. By giving an example, we show that the reverse of this property is not true.
作者 乔蕾 邓冠铁
出处 《中国科学:数学》 CSCD 北大核心 2014年第12期1247-1256,共10页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11271045,U1304102和11301140) 河南省教育厅科学技术指导计划资助项目(批准号:13A110036和12B110001) 河南省科技厅科技攻关科学基金(批准号:112102310519)资助项目
关键词 极细集 SCHRODINGER算子 Green-Sch位势 minimally thin set, Schrodinger operator, Green-Sch potential
  • 相关文献

参考文献15

  • 1Escassut A, Tutschke W, Yang C C. Some Topics on Value Distribution and Differentiability in Complex and P-adic Analysis. Bei]ing: Science Press, 2008.
  • 2Rosenblum G, Solomyak M, Shubin M. Spectral Theory of Differential Operators. In: Partial Differential Equations- 7, Advances of Science and Engineering, Modern Problems of Mathematics, Fundamental Directions, 64. Moscow: VINITI, 1989. 96-97.
  • 3Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. Berlin: Springer-Verlag, 1977.
  • 4Courant R, Hilbert D. Methods of Mathematical Physics. New York: Interscience Publishers, 2008.
  • 5Verzhbinskii G M, Maz'ya V G. Asymptotic behavior of solutions of elliptic equations of the second order close to a boundary. I. Sibirsk Mat J, 1971, 12:874-899.
  • 6Qiao L, Deng G T. Integral representation for the solution of the stationary SchrSdinger equation in a cone. Math Nachr, 2012, 285:2029-2038.
  • 7Qiao L, Pan G S. Generalization of the Phragmen-LindelSf theorems for subfunctions. Int J Math, 2013, 24, doi: 10.1142/S0129167X13500626.
  • 8Simon B. SchrSdinger semigroups. Bull Amer Math Soc, 1982, 7:447-526.
  • 9Qiao L, Deng G T. Integral representations and growth properties for a class of superfunctions in a cone. Taiwan Residents J Math, 2011, 15:2213-2233.
  • 10乔蕾,邓冠铁.锥中调和函数的积分表示[J].中国科学:数学,2011,41(6):535-546. 被引量:5

二级参考文献37

  • 1邓冠铁.半平面中解析函数的积分表示[J].数学学报(中文版),2005,48(3):489-492. 被引量:7
  • 2邓冠铁.半平面中有限阶解析函数的因子分解[J].数学学报(中文版),2007,50(1):215-220. 被引量:5
  • 3Rosenblum G, Solomyak M, Shubin M. Spectral Theory of Differential Operators. Moscow: VINITI, 1989.
  • 4Miranda C. Partial Differential Equations of Elliptic Type. London: Springer-Verlag, 1970.
  • 5Courant R, Hilbert D. Methods of Mathematical Physics, vol. 1. New York: Interscience Publishers, 1953.
  • 6Siegel D, Talvila E. Uniqueness for the n-dimensional half space Dirichlet problem. Pacific J Math, 1996, 175:571-587.
  • 7Axler S, Bourdon P, Ramey W. Harmonic Function Theory. Grad Texts in Math, vol. 137. London: Springer-Verlag, 1992.
  • 8Hayman W K, Kennedy P B. Subharmonic Functions, vol. 1. London: Academic Press, 1976.
  • 9Helms L L. Introduction to Potential Theory. New York: Wiley-Interscience, 1969.
  • 10Deng G T. Integral representations of harmonic functions in half spaces. Bull Sci Math, 2007, 131:53-59.

共引文献5

同被引文献5

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部