期刊文献+

非自治二阶Hamilton系统的周期解 被引量:1

Periodic solutions of non-autonomous second order Hamiltonian systems
原文传递
导出
摘要 本文推广了Willem的一个结果,Willem研究的受迫周期振动要求受迫势能关于空间变量是周期的,而本文只要求受迫势能对时间变量积分后关于空间变量是周期的,该结果包括了单摆的受迫振动.本文将用直接变分最小方法和Rabinowtz的鞍点定理来研究当势函数对时间变量积分后是周期时受迫摆方程的周期解. We try to generalize a result of Willem on forced periodic oscillations which require the assumption that the forced potential is periodic on spatial variables. In this paper, we only assume its integral on the time variable is periodic, and so we extend the result to cover the forced pendulum equation. We apply the direct variational minimizing method and Rabinowtz's saddle point theorem to study the periodic solution of the forced pendulum equation when the integral of the potential on the time variable is periodic.
出处 《中国科学:数学》 CSCD 北大核心 2014年第12期1257-1262,共6页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11071175) 教育部博士点基金(批准号:20120181110060)资助项目
关键词 受迫二阶Hamilton系统 受迫摆方程 变分最小 鞍点定理 forced second order Hamiltonian systems, the forced pendulum equation, variational minimiz-ers, saddle point theorem
  • 相关文献

参考文献9

  • 1Mawhin J, Willem M. Critical Point Theory and Hamiltonian Systems. New York: Springer-Verlag, 1989.
  • 2Willem M. Oscillations Forcees de Systemes Hamiltoniens. Besancon: Public Semin Analysis nonlineaire University Besancon, 1981.
  • 3Mawhin J, Willem M. Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations. J Differential Equations, 1984, 54:264-287.
  • 4Yosida K. Fhmctional Analysis, 5th ed. Berlin: Springer, 1978.
  • 5Adams R A, Fournier J F. Sobolev Spaces, 2nd ed. New York: Academic Press, 2003.
  • 6Ziemer W P. Weakly Differentiable Functions. New York: Springer, 1989.
  • 7Cerami G. Un criterio di esistenza per i punti critici so variete illimitate. Rend Dell Academia di sc Lombado, 1978, 112:332-336.
  • 8Rabinowitz P H. Minimax methods in critical point theory with applications to differetial eqautions. In: CBMS Reg Conf Ser Math, vol. 65. Providence, RI: Amer Math Soc, 1986.
  • 9Morrey C B. Multiple Integrals in the Calculus of Variations. Berlin: Springer, 1966.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部