期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
齐次线性方程组解的几点应用
下载PDF
职称材料
导出
摘要
应用齐次线性方程组有非零解,只有零解的理论,对四种不同的情况证明矩阵的秩的关系,以及矩阵间的线性关系。
作者
郭志军
机构地区
辽宁对外经贸学院
出处
《产业与科技论坛》
2014年第18期64-65,共2页
Industrial & Science Tribune
关键词
齐次线性方程组
解
秩
应用
分类号
O241.6 [理学—计算数学]
引文网络
相关文献
节点文献
二级参考文献
10
参考文献
5
共引文献
10
同被引文献
0
引证文献
0
二级引证文献
0
参考文献
5
1
王爱青,王廷明.
线性方程组解空间的进一步性质及应用[J]
.大学数学,2008,24(4):97-100.
被引量:3
2
周尚启.
线性方程组解的结构[J]
.高等数学研究,2005,8(3):56-57.
被引量:2
3
潘劲松.
线性方程组解的应用[J]
.哈尔滨师范大学自然科学学报,2013,29(1):8-11.
被引量:3
4
徐德余.
线性方程组理论在高等代数中的应用[J]
.绵阳师范学院学报,2008,27(11):5-11.
被引量:6
5
李瑞阁,胡祎,万冰蓉.
齐次线性方程组解理论的一个应用[J]
.南阳师范学院学报,2003,2(9):14-15.
被引量:1
二级参考文献
10
1
徐德余.
替换定理的两个证明[J]
.绵阳师范学院学报,2004,23(2):15-16.
被引量:1
2
王廷明,黎伯堂.
一类矩阵秩恒等式的证明[J]
.山东大学学报(理学版),2007,42(2):43-45.
被引量:16
3
北京大学数学系几何与代数小组.高等代数[M].北京:高等教育出版社,1998
4
许以超.代数学引论[M].上海:上海科学技术出版社,1986.
5
潘劲松.高职应用数学[M].长沙:湖南教育出版社,2010.
6
周尚启.线性方程组解的结构[J].髙等数学研究,2005(3),56 -57.
7
Brezinski C. Projection methods for linear systems[ J]. Journalof Computational and Applied Mathematics, 1997 , 77 : 35 -51.
8
杨桂元.
线性方程组解的有关问题[J]
.大学数学,2008,24(4):157-161.
被引量:7
9
耿秀荣,陈雪雯.
多个齐次线性方程组有非零公共解的充要条件[J]
.绵阳师范学院学报,2010,29(11):5-8.
被引量:1
10
李书超,蒋君,向世斌,徐树立.
一类矩阵秩的恒等式及其推广[J]
.武汉钢铁学院学报,2004,27(1):96-98.
被引量:30
共引文献
10
1
周晓康.
强非零线性系统的一个结果[J]
.兰州石化职业技术学院学报,2007,7(3):66-68.
被引量:2
2
刘娟,马宝林.
浅谈高等代数的“纵关”与“横联”[J]
.长沙大学学报,2010,24(5):97-98.
被引量:5
3
程伟.
加强能力培养 注重数学思想方法的运用[J]
.河北工业大学学报(社会科学版),2010,2(3):73-76.
被引量:2
4
王廷明.
矩阵多项式秩的几个恒等式及其应用[J]
.德州学院学报,2011,27(6):1-4.
5
宋小力.
关于(m,l)幂等矩阵的充要条件[J]
.曲阜师范大学学报(自然科学版),2012,38(2):37-40.
被引量:2
6
蒋红梅.
高等代数中替换定理的一种证明[J]
.教育教学论坛,2014(1):94-95.
7
贾丽丽.
线性方程组理论在高等代数空间理论中的应用研究[J]
.高教学刊,2015,1(17):69-69.
8
庄科俊.
线性方程组的几个教学案例分析[J]
.白城师范学院学报,2018,32(2):75-78.
被引量:2
9
贾宏宇,张淑娜,陈衍峰.
齐次线性方程组解空间的性质及应用[J]
.通化师范学院学报,2020,41(10):40-44.
10
杜玉坤.
浅谈反证法在高等代数中的应用[J]
.数学学习与研究,2021(3):8-10.
1
刘祖望.
有非零解的齐次线性方程组的应用[J]
.涪陵师范学院学报,2002,18(5):69-70.
被引量:3
2
慕晓凯.
齐次线性方程组有非零解条件的应用[J]
.佳木斯教育学院学报,2013(9):203-204.
3
高凯庆.
齐次线性方程组的理论在初等数学中的某些应用[J]
.数学通报,2002,41(1):39-40.
被引量:2
4
乔虎生,陈祥恩.
关于求解齐次线性方程组的一个新方法[J]
.大学数学,2014,30(3):71-73.
被引量:1
5
吴乐丹,李巧春.
一类三角函数和的周期的确定[J]
.温州师范学院学报,2006,27(5):12-14.
6
连铁艳,王社宽,成立花.
关于矩阵秩不等式证明的一种新方法[J]
.高师理科学刊,2010,30(6):24-25.
被引量:1
7
白淑敏.
齐次线性方程组基础解系的一种简便求法[J]
.河北师范大学学报(自然科学版),1996,20(1):23-24.
被引量:1
8
辛轶.
一种求伴随矩阵的方法[J]
.莆田学院学报,2007,14(5):101-102.
9
臧新建.
从一道证明题来看基础解系的一般证法[J]
.数学学习与研究,2014,0(5):74-74.
被引量:1
10
林碧媛.
矩阵最简形及其应用[J]
.广西教育学院学报,1994(2):95-100.
产业与科技论坛
2014年 第18期
职称评审材料打包下载
相关作者
内容加载中请稍等...
相关机构
内容加载中请稍等...
相关主题
内容加载中请稍等...
浏览历史
内容加载中请稍等...
;
用户登录
登录
IP登录
使用帮助
返回顶部