期刊文献+

基于FPGA的脑电信号CSP算法实现 被引量:1

Implementation of CSP for EEG signal separation based on FPGA
下载PDF
导出
摘要 脑机接口(BCI)是将采集到的大脑电信号转换为外部设备控制命令的一种系统。论述了共空间模式(CSP)算法在运动想象脑机特征提取的实现过程;提出了在FPGA平台上实现CSP特征提取算法的设计方法,其中包括协方差矩阵计算模块、基于Givens旋转算法的矩阵特征值和特征向量求解模块,并在FPGA开发板上实现了LDA脑电分类;针对本系统对3名实验者进行了测试,分类正确率达到70%以上。实验表明,本设计对今后便携式脑机接口系统的开发具有很好的参考价值。 Brain computer interface ( BCI ) is a system that translating electroencephalogram ( EEG ) into commands toward external peripheral . First , this article discusses the common spatial patterns ( CSP ) feature extraction algorithm implementation process for mo-tor imagery . Secondly , this article proposes the design process for CSP on the FPGA platform , the design includes the covariance matrix calculation module , matrix eigenvalues and eigenvectors solving module based on Givens rotation algorithm . And the LDA classification algorithm for EEG is also realized on FPGA development board . Finally , the system was tested on three experimenters , the correct classification rate was more than 70%. Experiments show that this design has a good reference value for the future de-velopment of portable brain-computer interface systems .
作者 万安 凌朝东
出处 《微型机与应用》 2014年第10期69-71,75,共4页 Microcomputer & Its Applications
关键词 脑机接口 共空间模式 FPGA Givens变换 特征提取 brain computer interface common spatial patterns FPGA Givens transform feature extraction
  • 相关文献

参考文献8

  • 1BIRBAUMER N,COHEN L G.Brain-computer interfaces (BCI):communication and restoration of movement in paralysis[J]. Physiol, 2007,579(3) : 621-636.
  • 2PIRES G,NUNES U,CASTELO-BRANCO M.Statistical spatial filtering for a P300-based BCI:test in able-bodied, and patients with cerebral palsy and amyotrophic lateral sclerosis[J].Neurosci, 2011 , 195(2) : 270-281.
  • 3SArFTAR F,CHARAYAPHAN C.Low-cost design and implementation of an ICA-based blind source separation algorithm[C].Proceeding of the |5th Annual IEEE International ASIC/SOC Conference,September 2002, Rochester, NY, USA IEEE, 2002 : 15-19.
  • 4LOTTE F, GUAN C.Regularizing common spatial patterns to improve BCI designs:unified theory and new algorithms[J].IEEE Transaction on Biomedical Engneering, 2011,58(2)355-362.
  • 5YEOM H G,SIM K B.ERS and ERD analysis during the imaginary movement of arms[C].International Con- ference on Control, Automation and Systems, Seoul Korea, IEEE, 2008 : 2476-2480.
  • 6伏云发,徐保磊,裴立力,李洪谊.基于脑电运动速度想象的单次识别研究[J].中国生物医学工程学报,2011,30(4):555-561. 被引量:4
  • 7吕俊,谢胜利,章晋龙.脑-机接口中基于ERS/ERD的自适应空间滤波算法[J].电子与信息学报,2009,31(2):314-318. 被引量:14
  • 8杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97

二级参考文献54

  • 1高上凯.无创高通讯速率的实时脑-机接口系统[J].中国基础科学,2007(3):25-26. 被引量:12
  • 2Lemm S, Schafer C, and Curio G. BCI competition 2003-data set Ⅲ: Probabilistic modeling of sensorimotor μ rhythms for classification of imaginary hand movements [J]. IEEE Trans. on Biomedical Engineering, 2004, 51(6): 1077-1080.
  • 3Li Y Q and Guan C T. A semi-supervised SVM learning algorithm for joint feature extraction and classification in brain computer interfaces [C]. The 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, New York, USA, Aug.30-Sep.3, 2006: 2570-2573.
  • 4Lemm S, Blankertz B, and Curio G, et al.. Spatio-spectral filters for improving the classification of single trial EEG [J]. IEEE Trans. on Biomedical Engineering, 2005, 52(9): 1541-1548.
  • 5McFarland D J, Anderson C W, and Muller K R, et al.. BCI meeting 2005-workshop on BCI signal processing: Feature extraction and translation [J]. IEEE Trans. on Neural and Rehabilitation Systems Engineering, 2006, 14(2): 135-138.
  • 6Hammon P S and deSa V R. Preprocessing and meta-classification for brain- computer interfaces [J]. IEEE Trans. on Biomedical Engineering, 2007, 54(3): 518-525.
  • 7Wang Y J, Zhang Z G, and Li Y, et al.. BCI competition 2003-data set Ⅳ: An algorithm based in CSSD and FDA for classifying single-trial EEG [J]. IEEE Trans. on Biomedical Engineering, 2004, 51(6): 1081-1086.
  • 8Liao X, Yao D Z, and Wu D, et al.. Combining spatial filters for the classification of single-triM EEG in a finger movement task [J]. IEEE Trans. on Biomedical Engineering, 2007, 54(5): 821-831.
  • 9Friedman J, Hastie T, and Tibshirani R. Additive logistic regression: A statistical view of boosting [J]. The Annals of Statistics, 2000, 28(2): 337-407.
  • 10Blankertz B, Muller K R, and Curio G, et al.. The BCI competition 2003: Progress and perspectives in detection and discrimination of EEG single trials [J]. IEEE Trans. on Biomedical Engineering, 2004, 51(6): 1044-1051.

共引文献112

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部