摘要
针对采用SOM网络进行多故障诊断时,要求多故障模式相似且不包含标准故障输出的限制,提出将SOM网络与可拓理论相结合的多故障诊断方法。首先采用SOM网络对训练样本进行聚类,得到故障模式及其聚类中心。然后针对每种故障模式的每个特征构造在聚类中心处取得最大值的关联函数,并以各特征的关联函数值为基础,设计多故障评价指标实现多故障诊断。最后采用汽轮发电机组振动信号的频谱数据对算法进行验证,结果表明该方法能够正确识别待诊断样本的单故障和多故障模式,具有可行性。
This paper proposes a multi-fault diagnosis algorithm combining SOM network with extension theory to meet the requirement that multi-fauh modes should be similar and do not contain the standard fault output when SOM network is used for multi-fault diagnosis. First, the training samples are clustered by SOM network, and the fault modes and these clustering centers can be obtained. Second, the dependent function of each feature for each fault mode is set up where the maximum value can be obtained at the clustering center. Next, the evaluation index of multi-fauh modes is designed for multi-fault diagnosis, which is based on the dependent function values of features. Finally, the spectrum data of vibration signal of steam turbine generator unit is adopted to verify the algorithm. The results show that both single-fauh mode and multi-fault modes can be correctly distinguished by this method, so the algorithm is feasible.
出处
《科技导报》
CAS
CSCD
北大核心
2014年第34期58-61,共4页
Science & Technology Review
基金
"泰山学者"建设工程专项
关键词
多故障诊断
SOM网络
可拓理论
关联函数
multi-fault diagnosis
SOM network
extension theory
dependent function