期刊文献+

基于灰色预测的光伏组件阴影类型诊断研究 被引量:8

A Gray Prediction Based Diagnosis on Shadow Types Over Photovoltaic Modules
下载PDF
导出
摘要 针对光伏组件阴影类型难以判别的情况,提出了基于灰色预测的光伏组件软硬性阴影区别方法。首先通过小波理论分析灰色预测应该达到的前提条件。然后对灰色预测GM(1,1)进行改进,提出了使用新陈代谢GM(1,1)对光伏组件功率进行预测。最后对预测值与实测值进行误差分析,根据得出模型精度差异来判别阴影性质。通过仿真和实验证明了软性阴影和硬性阴影在灰色模型预测精度等级有明显的差异,可以通过精度等级判断阴影类型。该方法能有效判定阴影性质,为积灰程度判定与光伏热斑检测提供了有力的依据。 In allusion to the fact that it is hard to distinguish the shadow types over photovoltaic (Pv) modules, a gray prediction based method to distinguish the soft shadow from the hard shadow over PV modules is proposed. Firstly, the precondition that the gray prediction has to achieve is analyzed by wavelet theory; then the gray prediction GM(1,1) is improved and it is proposed to predict the power output of PV modules by metabolic GM(1,1); finally, the error analysis on both predicted results and measured results is performed, and based on the obtained model accuracy difference the nature of the shadow can be judged. It is proved by simulation and experiments that as for the soft shadow and the hard shadow there are obvious differences in the accuracy classes predicted by gray model, thus it is possible to judge the types of the shadow by accuracy classes. Using the proposed method the nature of the shadow can be effectively judged, thus a solid foundation is provided for the judgment of the dust accumulation and the detection of hot Spots.
出处 《电网技术》 EI CSCD 北大核心 2014年第12期3293-3299,共7页 Power System Technology
关键词 小波多分辨分析 新陈代谢GM(1 1) 灰色预测 阴影类型判别 wavelet MRA metabolic GM(1,1) greyprediction shadow type judgment
  • 相关文献

参考文献11

二级参考文献138

共引文献618

同被引文献76

  • 1王培珍,王群京,杨维翰.太阳能光伏阵列的红外特性研究[J].合肥工业大学学报(自然科学版),2004,27(7):769-773. 被引量:10
  • 2董雷,周文萍,张沛,刘广一,李伟迪.基于动态贝叶斯网络的光伏发电短期概率预测[J].中国电机工程学报,2013,33(S1):38-45. 被引量:77
  • 3李德毅,刘常昱,杜鹢,韩旭.不确定性人工智能[J].软件学报,2004,15(11):1583-1594. 被引量:401
  • 4刘常昱,李德毅,杜鹢,韩旭.正态云模型的统计分析[J].信息与控制,2005,34(2):236-239. 被引量:210
  • 5TAVNER P J, XIANG J, SPINATO F. Reliability analysis for wind turbines[J]. Wind Energy, 2007,10( 1): 1-18.
  • 6YUE Wang, INFIELD D. Supervisory control and data acquisition dam-based non-linear state estimation technique for wind turbine gearbox condition monitoring[J]. IEEE Transactions on Renewable Power Generation, 2013,7(4): 350-358.
  • 7QIU Yingning,SUN Juan,CAO Mengnan,et al. Model based wind turbine gearbox fault detection on SCADA data [C]//IET Conference on Renewable Power Generation. Naples: IEEE Press, 2014: 1-5.
  • 8ZHOU Quan, WANG Shizheng, AN Wendou, et al. Power transformer fault diagnosis based on DGA combined with cloud model [C]//International Conference on High Voltage Engineering and Application. Poznan: IEEE Press, 2014 : 1-4.
  • 9SUN Yong, LI Zenglu, MENG Hong, et al. Fault diagnosis of flight control system based on correction high dimen- sional cloud model[C]// International Conference on Computer Science & Service System. Nanjing: IEEE Press, 2012..1793-1797.
  • 10郑祖庥.分数微分方程的发展和应用[J].徐州师范大学学报(自然科学版),2008,26(2):1-10. 被引量:49

引证文献8

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部