期刊文献+

补偿双馈风电机组电磁转矩-转速闭环相位滞后特性的传动轴系统阻尼控制 被引量:12

Damping Control of Drive-Train System of DFIG to Compensate Phase Lag Characteristics of Electromagnetic Torque-Generator Speed Closed Loop
下载PDF
导出
摘要 准确地获取双馈风电机组闭环控制回路的相位特性并对其进行合适的相位补偿是设计传动轴系统阻尼控制器的关键,为此,推导了定子磁链定向坐标系下双馈风电机组闭环系统电磁转矩-电机转速的微增量表达式,建立了阻尼转矩系数与有功控制策略、机组运行状态和控制系统参数之间的联系,据此设计了含相位补偿环节的基于电机转速信号的扭转振荡阻尼控制器,并从阻尼转矩系数分析、根轨迹分析和时域仿真3个角度验证了该控制器在不同运行状态下的有效性和鲁棒性。结果表明,在相同增益下,补偿控制系统相位滞后特性的阻尼控制比无相位补偿阻尼控制更能有效地提高扭转振荡阻尼以及降低对轴系的暂态转矩冲击。 It is a key step to obtain accurate phase characteristics of the closed-loop system of a doubly-fed induction generator (DFIG) and compensate the corresponding phase lag in the design of a drive-train system damping controller. Therefore, the closed-loop electromagnetic torque-generator speed characteristics of DFIG under small perturbations are formulated in the stator-flux orientation reference frame. This formulation also quantitatively establish the relationship between the damping torque coefficient and operating points, active power schemes as well as machine and controller parameters. On this basis, a generator speed-based damping controller is designed to mitigate torsional oscillations in the drive-train system of DFIG considering the phase lag within the torque-speed loop. The effectiveness and robustness of the damping controller with respect to various operating points are verified through damping torque coefficient analysis, root locus and time-domain simulations. It is demonstrated that for the same gain, the damping controller with phase compensation can more effectively improve the torsional damping and reduce the transient torque in the drive-train system than that without it.
出处 《电网技术》 EI CSCD 北大核心 2014年第12期3333-3340,共8页 Power System Technology
基金 国家高技术研究发展计划(863计划)(2014AA051901) 国家电网公司科技项目(KTB11201301545)~~
关键词 相位补偿 阻尼控制 扭转振荡 双馈风电机组 phase compensation damping control torsional oscillations doubly-fed induction generator
  • 相关文献

参考文献18

  • 1Ackermann T. Wind power in power systems[M]. New York: John Wiley& Sons, 2005~ 545-546.
  • 2Hansen A D, lov F, Sorensen P, et al. Dynamic wind turbine models in power system simulation tool DIgSILENT[R]. Roskilde: Riso National Laboratory, 2007.
  • 3Akhmatov V. Analysis of dynamic behavior of electric power systems with large amount of wind power[D]. Denmark: Technical University of Denmark, 2003.
  • 4Samer El Itani, G6za Jo6s. Advanced wind generator controls: meeting the evolving grid interconnection requirements, advances in wind power[EB/OL]. Dr. Rupp Carriveau (Ed.), [2014-05-30] . http://www. intechopen.com/books/advances-in-wind-power/advanced-wind-genera tor-controls-meeting-the-evolving-grid-interconnection-requirements, 2012.
  • 5Bossanyi E A. The design of closed loop controllers for wind turbines[J]. Wind Energy, 2000, 3(3): 149-163.
  • 6Burton T, Sharpe D, Jenkins N, et al. Wind energy handbook[M]. NewYork: Wiley, 2001: 511-513.
  • 7Bossanyi E A. Wind turbine control for load reduction[J]. Wind.Energy, 2003, 6(3): 229-244.
  • 8Mandic G, Nasiri A, Muljadi E. Active torque control for gearbox load reduction in a variable-speed wind turbine[J]. IEEE Trans on Industry Applications, 2012, 48(6): 2424-2432.
  • 9Mishra Y, Mishra S, Tripathy M. Improving stability of a DFIG-based wind power system with tuned damping controller[J]. IEEE Trans on Energy Conversiorl, 2009, 24(3): 650-660.
  • 10Licari J, Ugalde-Loo C E, Ekanayake J B, et al. Damping of torsional vibratiuns in a variable-speed wind turbine[J]. IEEE Trans on Energy Conversion, 2013, 28(1).- 172-180.

二级参考文献76

共引文献111

同被引文献117

引证文献12

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部