期刊文献+

重质化学二氧化锰制备尖晶石锰酸锂

Preparation and Characterization of Spinel LiMn_2O_4 by Densified Chemical Manganese Dioxide
下载PDF
导出
摘要 采用重质化学二氧化锰制备尖晶石LiMn2O4。采用X射线衍射、扫描电镜、恒电流充放电等技术对合成产物进行物相、形貌和电化学分析。结果表明:采用重质化学二氧化锰与电解二氧化锰制备的LiMn2O4粉末具有相似的X射线衍射结果。采用重质化学二氧化锰制备的LiMn2O4在0.2C、0.5C、1C、2C及3C放电倍率下放电比容量分别为108.5、104.7、97.3、86.5mA·h/g和70.7mA·h/g,以电解二氧化锰为原料制备的LiMn2O4放电比容量则分别为106.1、103.4、99.1、89.2mA·h/g和75.5mA·h/g。两种原料制备的LiMn2O4在不同倍率下的比容量和充放电循环性能差别不大,采用重质化学二氧化锰制备的锰酸锂电化学性质可以达到或超过采用电解二氧化锰制备的锰酸锂。 Spinel LiMn2O4 was synthesized from densified chemical manganese dioxide and electrolytic manganese dioxide. The phase identification, surface morphology and electrochemical properties of the synthesized powders were characterized by means of X-ray diffraction, scanning electron microscopy, cyclic vohammetry and galvanostatie charge-discharge experiments. The LiMn2O4 powders prepared from densified chemical manganese dioxide and electrolytic MnO2 show similar X-ray diffraction patterns. When discharged at the rates of 0. 2 C,0. 5 C, 1 C,2 C and 3 C, the capacity of LiMn2O4 powders prepared from densified chemical manganese dioxide is 108.5 mA · h/g, 104.7 mA · h/g, 97.3 mA· h/g, 86.5 mA· h/g and 70. 7 mA · h/g, respectively, while the one prepared from electrolytic MnO2 is 106. 1 mA · k/g,103.4 mA ·h/g,99.1 mA · h/g,89.2 mA· h/g and 75.5 mA · h/g. There is no obvious difference in the cycling behavior between the LiMn2O4 prepared from densified chemical manganese dioxide and the one from electrolytic MnO2. The electrochemical performance of LiMn2O4 prepared from densified chemical manganese dioxide is as good as or even better than that of the one prepared from electrolytic MnO2.
出处 《精细化工》 EI CAS CSCD 北大核心 2014年第12期1427-1430,共4页 Fine Chemicals
基金 国家自然科学基金(21263004) 湖南省高校科技创新团队支持计划资助~~
关键词 锰酸锂 锂离子电池 化学二氧化锰 电化学 功能材料 lithium manganese oxide lithium ion battery chemical manganese dioxide electrochemistry functional materials
  • 相关文献

参考文献10

  • 1Li J L, Daniel C, Wood D. Materials procevssing for lithium-ion batteries [ J ]. Journal of Power Sources,2011,196:2452 - 2460.
  • 2Chung K Y,Kim J H,Yoon W S,et al. The condition for the evolution of extra current peak in the cyclic voltammogram of LixMn2O4 investigated by in situ bending beam method [ J ]. Electrochemistry Communications ,2009,11:212 - 215.
  • 3LIU Yunjian,GUO Huajun,LI Xinhai,WANG Zhixing.Improving the electrochemical performance of LiMn_2O_4/graphite batteries using LiF additive during fabrication[J].Rare Metals,2011,30(2):120-125. 被引量:6
  • 4Xiao L,Guo Y,Qu D,et al. Influence of particle sizes and morphologies on the electrochemical performances of spinel LiMn2O4 cathode materials [ J]. Journal of Power Sources,2013, 225:286 - 292.
  • 5Tang W,Wang X J,Hou Y Y,et al. Nano LiMn2O4 as cathode material of high rate capability for lithium ion batteries [ J ]. Journal of Power Sources ,2012,198:308 - 311.
  • 6Kim W K,Han D W,Ryu W H,et al. A12O3 coating on LiMn2O4 by electrostatic attraction forces and its effects on the high temperature cyclic performance [ J ]. Electrochimica Acta, 2012, 71:17 -21.
  • 7Wan C,Wu M,Wu D. Synthesis of spherical LiMn2O4 cathode material by dynamic sintering of spray-dried precursors [ J ]. Powder Technology ,2010,199 : 154 - 158.
  • 8王双才,习小明,李伟,黄海花.四氧化三锰和电解二氧化锰制备尖晶石型锰酸锂的研究[J].矿冶工程,2012,32(6):113-115. 被引量:11
  • 9Zhao Y Q, Jiang Q L, Wang W G, et al. Effect of electrolytic MnO2 Pretreatment on performance of as prepared LiMn2O4 [ J ]. Transanctions of Nonferrous Metals Society of China, 2012,22: 1146 - 1150.
  • 10李同庆.2010年电解二氧化锰市场回顾和展望[J].中国锰业,2011,29(2):1-5. 被引量:1

二级参考文献10

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部