摘要
CrN microspheres were synthesized by using a cathodic arc plasma source system. The obtained samples were annealed in air at temperatures of 300-800 ℃ for 60 min. The influence of annealing temperature on the microstructure and surface morphology of the CrN microspheres was investigated. The CrN microspheres were characterized by means of scanning electron microscopy, transmission electron microscopy and X-ray diffraction analysis. The results show that the CrN nanoparticles arranged into leaf-like structures before annealing. With the rising of the annealing temperature, the size of CrN crystal nanoparticals became larger. When the annealing temperature exceeded the oxidation point(500 ℃), the CrN was oxidized and the leaf-like structure was broken. With further increase of the annealing temperature(700 ℃), the arrangement of CrN nanoparticles was changed from leaf-like structure to be discrete.
CrN microspheres were synthesized by using a cathodic arc plasma source system. The obtained samples were annealed in air at temperatures of 300-800 ℃ for 60 min. The influence of annealing temperature on the microstructure and surface morphology of the CrN microspheres was investigated. The CrN microspheres were characterized by means of scanning electron microscopy, transmission electron microscopy and X-ray diffraction analysis. The results show that the CrN nanoparticles arranged into leaf-like structures before annealing. With the rising of the annealing temperature, the size of CrN crystal nanoparticals became larger. When the annealing temperature exceeded the oxidation point(500 ℃), the CrN was oxidized and the leaf-like structure was broken. With further increase of the annealing temperature(700 ℃), the arrangement of CrN nanoparticles was changed from leaf-like structure to be discrete.
基金
Supported by the National Natural Science Foundation of China(11205116)
the International Cooperation Program of Ministry of Science and Technology of China(2011DFR50580)