摘要
A sloshing experiment is conducted to study the hydroelastic effect in an elastic tank. For this purpose, a translational harmonic excitation is applied to a 2-D rectangular tank model. The lowest-order natural frequencies of the liquid in the tank are determined through the sweep test. The wave elevation and the sloshing pressure are obtained by changing the excitation frequency and the liquid depth. Then the characteristics and the variation of the elevation and the pressure are discussed. The results are compared with the experimental results and the theoretical calculations in a rigid tank. Our analysis indicates that, in the non- resonant cases, the elastic results, the rigid experimental results and the theoretical values are all close to each other. In contrast, under the resonant condition, the elastic experimental result is slightly smaller than the rigid one. Also, the theoretical values are smaller than the experimental results at the resonant frequency.
A sloshing experiment is conducted to study the hydroelastic effect in an elastic tank. For this purpose, a translational harmonic excitation is applied to a 2-D rectangular tank model. The lowest-order natural frequencies of the liquid in the tank are determined through the sweep test. The wave elevation and the sloshing pressure are obtained by changing the excitation frequency and the liquid depth. Then the characteristics and the variation of the elevation and the pressure are discussed. The results are compared with the experimental results and the theoretical calculations in a rigid tank. Our analysis indicates that, in the non- resonant cases, the elastic results, the rigid experimental results and the theoretical values are all close to each other. In contrast, under the resonant condition, the elastic experimental result is slightly smaller than the rigid one. Also, the theoretical values are smaller than the experimental results at the resonant frequency.
基金
supported by the National Natural Science Foundation of China(Grant No.51179030,51309038)