期刊文献+

基于ACO的测试用例预优化及参数影响分析 被引量:6

ACO Based Test Case Prioritization and Impact Analysis of Parameters
下载PDF
导出
摘要 测试用例预优化是一种先进的软件回归测试用例集优化技术。相比测试用例选择和测试用例集约简技术,它具有更好的灵活性,更容易适应实际软件回归测试过程中的迭代与变化。基于多目标的测试用例预优化技术是当前研究的热点,针对选定的多个优化目标,算法是多目标测试用例集优化的关键。提出了一种基于蚁群优化算法(ant colony optimization,ACO)的多目标测试用例预优化方法,针对平均语句覆盖率和有效执行时间两个优化目标,实现了测试用例集的预优化,并针对多目标解集优劣评价方法进行了改进。同时对蚁群优化算法中的信息素挥发因子ρ、启发因子α和β、蚁群规模m等相关参数对多目标测试用例预优化结果的影响进行了实验分析。实验中使用的被测程序既包括广泛使用的软件测试样本库SIR(software-artifact infrastructure repository)中的程序,也包括Google发布的大规模开源程序Java Script引擎V8。实验结果表明,当参数α=14≥β≥6ρ=0.1时,针对小规模程序,蚁群规模m=32时,算法求得较优解;针对较大规模程序flex和V8,则需要适当增大蚁群的规模以获得较优解集。 Test case prioritization is an advanced software regression testing technique. Compared to the techniques of regression test selection and test suite minimization, it is more flexible to adapt the changes occurred in regression testing iterations. The multi-objective test case prioritization has become a hot spot recently, and for selected optimal objects, algorithm is the key for the achievement of multi-objective optimization. This paper proposes an ant colony optimization (ACO) based multi-objective test case prioritization technique, with two optimal objects, average percentage of statement coverage (APSC) and effective execution time (EET), and improves the evaluation formula of multi-objective sets. This paper also empirically studies the impact of parameters used in ACO, especially pheromone evaporation factor ρ,heuristic factors α,β and ant colony size m. The programs under test are from software-artifact infrastructure repository (SIR) and an open source program of V8 that is JavaScript engine pub-lished by Google. The results show that when α=1,4≤β≤6,ρ=0.1,m=32, the algorithm can obtain optimal sets for the small programs, while m becomes larger with the increase of the size of programs that is demonstrated by the results for flex and V8.
出处 《计算机科学与探索》 CSCD 2014年第12期1463-1473,共11页 Journal of Frontiers of Computer Science and Technology
基金 教育部新世纪优秀人才支持计划 教育部留学回国人员科研启动基金~~
关键词 回归测试 测试用例预优化 多目标优化 蚁群优化算法 参数分析 regression testing test case prioritization multi-objective optimization ant colony optimization param-eter analysis
  • 相关文献

参考文献16

  • 1Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271.
  • 2Zhang Lu, Hou Shanshan, Guo Chao, et al. Time-aware test case prioritization using integer linear programming[C]// Proceedings of the 18th International Symposium on Soft- ware Testing and Analysis (ISSTA '09), Chicago, USA, 2009.New York, NY, USA: ACM, 2009: 213-224.
  • 3Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies[C]//Proceedings of the 1st European Confer- ence on Artificial Life Toward a Practice of Autonomous Systems (ECAL '92), Paris, France, 1992. Cambridge, MA,USA: MIT Press, 1992: 134.
  • 4Stutzle T, Hoos H. MAX-MZN ant system and local search for the traveling salesman problem[C]//Proceedings of the 1997 IEEE International Conference on Evolutionary Com- putation (ICEC '97), Indianapolis, USA, 1997. Piscataway, NJ, USA: IEEE, 1997: 309-314.
  • 5Deb K, Agrawal S, Pratap A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-Ⅱ[C]//LNCS 1917: Proceedings of the 6th Interna- tional Conference on Parallel Problem Solving from Nature (PPSN '00), Paris, France, Sep 18-20, 2000. Berlin, Heidel- berg: Springer-Verlag, 2000: 849-858.
  • 6Singh Y, Kaur A, Suri B. Test case prioritization using ant colony optimization[J]. ACM SIGSOFT Sottware Engineering Notes, 2010, 35(4): 1-7.
  • 7Walcott K R, Sofia M L, Kapflaammer G M, et al. Time-aware test suite prioritization[C]//Proceedings of the 2006 Interna- tional Symposium on Software Testing and Analysis (ISSTA '06), Portland, USA, 2006. New York, NY, USA: ACM, 2006: 1-12.
  • 8Chen G Y, Rogers J. Arranging software test cases through an optimization method[C]//Proceedings of the 2010 Con- ference on Technology Management for Global Economic Growth (PICMET '10), Phuket, Thailand, 2010. Piscataway, NJ, USA: IEEE, 2010: 1-5.
  • 9Dorigo M, Maniezzo V, Colomi A. Ant system: optimiza- tion by a colony of cooperating agents[J]. IEEE Transac- tions on Systems, Man, and Cybernetics: Part B Cybernetics, 1996, 26(1): 29-41.
  • 10Praditwong K, Harman M, Yao Xin. Software module clus- tering as a multi-objective search problem[J]. IEEE Trans- actions on Software Engineering, 2011, 37(2): 264-282.

同被引文献56

  • 1马雪英,盛斌奎.测试用例最小化研究[J].计算机应用研究,2007,24(7):35-39. 被引量:8
  • 2Harrold M J, Orso A. Retesting software during development and maintenance [C]//Frontiers of Software Maintenance, Beijing, China: IEEE ,2008:99 - 108.
  • 3Rajvir S,Mamta S. Test case minimization techniques: A review[J]. International Journal of Research & Technology,2013,2 (12) : 1048 - 1056.
  • 4Alireza K, Saeed P. Bi - criteria test suite reduction by cluster analysis of execution profiles [C]. International Federation for Information Processing,2012,243 - 256.
  • 5李金蓉.基于改进的蚁群算法在测试用例集约简问题上的应用研究[M].广东:华南理工大学,2013.
  • 6刘艳.基于程序切片算法的测试用例集约简方法[M].安徽:安徽大学,2013.
  • 7Harrold M J, Gupta R, Sofia M L. A methodology for controlling the size of a test suite [J 1. ACM Transaction on Software Engineering an Methodology, 1993,2 (3) :270 - 285.
  • 8Hua L, Ding X M. Test suite reduction based on ant colony algorithm with mutation index[C]. ICCSE'2008:74 -76.
  • 9Jeffrey D, Gupta N. Improving fault detection capability by selectively retaining test cases during suite reduction[J l. IEEE Transaction on Software Engineering,2007,33,108 -123.
  • 10SHARMA I, KAUR J, SAHNI M. A test case prioritization approach in regression testing [J]. International Journal of Computer Science & Mobile Computing, 2014, 3(7): 607-614.

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部