期刊文献+

基于层次依赖的Markov网络信息检索扩展模型 被引量:2

Markov Network Information Retrieval Expanded Model Based on Hierarchical Dependence
下载PDF
导出
摘要 查询扩展是解决查询词与相关文档中的词不匹配而导致检索效率低下问题的关键技术之一。提出了基于层次依赖的Markov网络信息检索扩展模型。该模型综合考虑了候选词与查询词的层次距离、词间相关性、词节点的出度和路径等因素,通过层次依赖关系对候选词进行重新加权,选择与查询最为相关的候选词应用于信息检索扩展模型,有利于挖掘出更多潜在的、深层次依赖关系的查询候选词。在5个标准数据集上进行了实验,结果表明基于层次依赖的Markov网络信息检索扩展模型与未进行查询扩展的BM25模型相比,在3-avg和11-avg上分别提高了5%-41%和5%-70%不等,与基于直接相关的Markov网络信息检索扩展模型相比,该模型在总体检索效率上表现更优。 Query expansion is one of key technologies to solve the low efficiency problem which is caused by the term mismatch between user query and relevant documents. This paper proposes a Markov network information retrieval expanded model based on hierarchical dependence. This model considers these factors comprehensively such as hierarchy distance between candidates and query terms, relevance between terms, the out degree of a term and path selection. This model also helps to mine more potential candidates by term reweighting with hierarchical depen-dence and to select candidates with more relevant to query for information retrieval expanded model. The experi-mental results on five standard collections demonstrate that the Markov network information retrieval expanded model based on hierarchical dependence outperforms BM25 model without query expansion by 5%-41%and 5%-70%in 3-avg and 11-avg respectively. Compared with the Markov network information retrieval expanded model based on direct correlation, the proposed model performs better overall on retrieval efficiency.
出处 《计算机科学与探索》 CSCD 2014年第12期1485-1493,共9页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金 江西省高等学校科技落地计划(产学研合作) 江西省自然科学基金 江西省高校人文社会科学研究基金~~
关键词 层次依赖 MARKOV网络 查询扩展 信息检索 hierarchical dependence Markov network query expansion information retrieval
  • 相关文献

参考文献18

  • 1洪欢,王明文,万剑怡,廖亚男.基于迭代方法的多层Markov网络信息检索模型[J].中文信息学报,2013,27(5):122-128. 被引量:10
  • 2Gao Jianfeng, Xu Gu, Xu Jinxi. Query expansion using path- constrained random walks[C]//Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '13), Dublin,Ireland, Jul 28-Aug 1, 2013. New York, NY, USA: ACM, 2013: 563-572.
  • 3石松,王明文,涂伟,何世柱.基于Markov网络团的信息检索扩展模型[J].山东大学学报(理学版),2011,46(5):54-57. 被引量:3
  • 4左家莉.信息检索中Markov网络图模型研究[D].南昌:江西财经大学,2011.
  • 5Cao Guihong, Nie Jianyun, Gao Jianfeng, et al. Selecting good expansion terms for pseudo-relevance feedback[C]// Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '08), Singapore, Jul 20-24, 2008. New York, NY, USA: ACM, 2008: 243-250.
  • 6Gao Jianfeng, Nie Jianyun. Towards concept-based transla- tion models using search logs for query expansion[C]//Pro- ceedings of the 21 st ACM International Conference on Infor- mation and Knowledge Management (CIKM '12), Maul, USA, Oct 29-Nov 2, 2012. New York, NY, USA: ACM, 2012.
  • 7Maxwell K T, Crota W B. Compact query term selection using topically related text[C]//Proceedings of the 36th Interna- tional ACM SIGIR Conference on Research and Develop- ment in Information Retrieval (SIGIR '13), Dublin, Ireland, Ju128-Aug l, 2013. New York, NY, USA: ACM, 2013:583-592.
  • 8Zhai Chengxiang, Lafferty J. Model-based feedback in the KL-divergence retrieval model[C]//Proceedings of the 10th International Conference on Information and Knowledge Management (CIKM '01), Atlanta, USA, Nov 5-10, 2001. New York, NY, USA: ACM, 2001: 403-410.
  • 9李卫疆,赵铁军,王宪刚.基于上下文的查询扩展[J].计算机研究与发展,2010,47(2):300-304. 被引量:32
  • 10Metzler D, Croft W B. Latent concept expansion using Mar- kov random fields[C]//Proceedings of the 30th Annual Inter- national ACM SIGIR Conference on Research and Develop- ment in Information Retrieval (SIGIR '07), Amsterdam, Jul 23-27, 2007. New York, NY, USA: ACM, 2007:311-318.

二级参考文献95

共引文献240

同被引文献17

  • 1MARS B, HERON J, B1DDLE L, et al. Exposure to, and searching for, information about suicide and self-harm on the Internet Prevalence and predictors in a population based cohort of young adults[J]. Journal of Affective Disor- ders, 2015,185 : 239-245.
  • 2DARABAD V P,VAKILIAN M, BLACKBURN T R. An efficient PD data mining method for power transformer defect models using SOM technique[J]. International Journal of Electrical Power and Energy Systems, 2015,71(4) 373-382.
  • 3MADISON A, BUETTI S, LLEARS A. Singleton search performance predicts performance on heterogeneous dis- plays: Evidence in support of the information theory of vision[J]. Journal of Vision,2015,15(12) : 12-14.
  • 4MONCHAUX S, AMADIEU F, CHEVALIER A. Query strategies during information searching: Effects of prior domain knowledge and complexity of the information problems to be solved[J]. Information Processing and Manage- ment,2015,51(5) :557-569.
  • 5TANG Yuzhe, LIU Ling. Privacy preserving multi-keyword search in information networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2015,27 (9) : 2424-2437.
  • 6KUMAR A V, ALI R F M, CAO Yu. Application of data mining tools for classification of protein structural class from residue based averaged NMR chemical shifts[J]. Bioehimica Et Biophysica Acta, 2015,1854(10): 1545-1552.
  • 7陈叶旺,余金山.一种改进的朴素贝叶斯文本分类方法[J].华侨大学学报(自然科学版),2011,32(4):401-404. 被引量:11
  • 8涂伟,甘丽新,黄乐辉,谢志华.基于改进互信息的信息检索扩展模型[J].计算机工程与科学,2013,35(3):150-154. 被引量:2
  • 9洪欢,王明文,万剑怡,廖亚男.基于迭代方法的多层Markov网络信息检索模型[J].中文信息学报,2013,27(5):122-128. 被引量:10
  • 10曹瑛,王明文,涂伟,甘丽新.基于PageRank的Markov网络信息检索扩展模型[J].山西大学学报(自然科学版),2014,37(1):12-18. 被引量:4

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部