期刊文献+

多种群多策略的并行差分进化算法 被引量:10

Parallel Differential Evolution with Multi-Population and Multi-Strategy
下载PDF
导出
摘要 为了更好地提高并行差分进化算法的求解精度和计算效率,实现适用于解决多种优化问题的鲁棒性算法,提出了一种多种群多策略的并行差分进化算法。该算法将种群划分为多个子种群,不同的子种群分别采用不同的差分进化策略。多个子种群各自独立进化,互不干扰,每隔一定代数才进行种群间的通信交流。通过利用多种群实现多种优化策略,并采用并行方式,使得算法可以采用不同的优化策略进行搜索,更加节省计算时间。数值实验结果表明,该算法在求解不同类型的优化问题时都具有良好的计算能力和效率。 In order to improve the accuracy and efficiency of parallel differential evolution (DE), this paper proposes a parallel differential evolution with multi-population and multi-strategy, which provides a way to rebustly address various optimization problems. This algorithm divides an initial population into several subpopulations, and then they evolve with different DE strategies. The subpopulations evolve independently at first, and then communicate with each other at regular intervals. By using the proposed multi-population and multi-strategy, the parallel realization of the algorithm can save the computation time while searching with different optimization strategies. The experi- mental results show that the proposed algorithm is feasible and effective for solving different optimization problems.
出处 《计算机科学与探索》 CSCD 2014年第12期1502-1510,共9页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金 广东省自然科学基金 中央高校基本科研业务费专项资金 高等学校博士学科点专项科研基金~~
关键词 多种群 多策略 并行 差分进化 multi-population multi-strategy parallel differential evolution
  • 相关文献

参考文献15

  • 1Storn R, Price K. Differential evolution-a simple and effi- cient adaptive scheme for global optimization over continuous spaces[M]. Berkeley, USA: ICSI, 1995.
  • 2Storn R. Differential evolution design of an IIR-filter[C]// Proceedings of the 1996 IEEE International Conference on Evolutionary Computation (ICEC '96). Piscataway, NJ, USA: IEEE, 1996: 268-273.
  • 3Store R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359.
  • 4Vesterstrom J, Thomsen R. A comparative study of differen- tial evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems[C]//Proceedings of the 2004 IEEE Congress on Evolutionary Computation (CEC '04). Piscataway, NJ, USA: IEEE, 2004, 2: 1980-1987.
  • 5Hu Xiaomin, Zhang Jun, Chen Haihong. Optimal vaccine distribution strategy for different age groups of population: a differential evolution algorithm approach[J/OL]. Mathe- matical Problems in Engineering, 2014[2014-08-31]. http:// dx.doi.org/10.1155/2014/702973.
  • 6Das S, Suganthan P N. Differential evolution: a survey of the state-of-the-art[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 4-31.
  • 7Plagianakos V P, Tasoulis D K, Vrahatis M N. A review of major application areas of differential evolution[M]//Advances in Differential Evolution. Berlin, Heidelberg: Springer, 2008: 197-238.
  • 8Lampinen J. Differential evolution-new naturally parallel approach for engineering design optimization[G]//Topping B H V. Developments in Computational Mechanics with High Performance Computing. Edinburgh, UK: Civil-Comp Press, 1999: 217-228.
  • 9Tasoulis D K, Pavlidis N G, Plagianakos V P, et al. Parallel differential evolution[C]//Proceedings of the 2004 IEEE Con- gress on Evolutionary Computation (CEC '04). Piscataway, N J, USA: IEEE, 2004, 2: 2023-2029.
  • 10Qing A. Electromagnetic inverse scattering of multiple per- fectly conducting cylinders by differential evolution strategy with individuals in groups (GDES)[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(5): 1223-1229.

同被引文献83

引证文献10

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部