期刊文献+

共轭调和张量的双权范数估计式

Two-Weight Norm Estimates For Conjugate Harmonic Tensors
下载PDF
导出
摘要 利用一些经典不等式,以及权函数的定义及性质,借助有关共轭调和张量的局部加权不等式,得到同伦算子作用于共轭调和张量的双权范数估计式,以及共轭调和张量的双权Sobolev嵌入不等式. Use of some classical inequalities and the definition of the weight function and nature, with the help of the conjugate Harmonic tensors of locally weighted inequality,getting the two--weight norm es- timates for conjugate Harmonic tensors on Homotopy Operator,and two--weight sobolev imbedding inequality.
出处 《河北联合大学学报(自然科学版)》 CAS 2014年第4期62-66,共5页 Journal of Hebei Polytechnic University:Social Science Edition
基金 河北省自然基金项目(A2013209278)
关键词 共轭调和张量 同伦算子 嵌入不等式 微分算子 conjugat harmonic tensors homotopy operator imbedding inequality codiefferntia opeartor
  • 相关文献

参考文献6

  • 1王勇.关于共轭A-调和张量的加权SOBOLEV嵌入不等式[J].黑龙江大学自然科学学报,2005,22(4):438-440. 被引量:1
  • 2贺丹.共轭A-调和张量加A_r(Ω)-权Poincaré-型估计[J].哈尔滨师范大学自然科学学报,2012,28(6):22-24. 被引量:1
  • 3Ding S.The weak reverse Holder inequality for conjugate A-harmonic tensors[Z].Preprint,205-211.
  • 4NOLDER C A.Global Integrability Theorems for A-harmonic Tensors[J].J Math Anal Appl,2000,247:236-245.
  • 5Ding S S.Weighted Caccioppoli-Type Estimates and Weak Reverse Holder Inequalities for A-Harmonic Tensor[J].Proceedings of the American Mathematical Society,1998,127:2657-2664.
  • 6Garnett J B.Bounded Analiytic Functions[M].Academic Press,New York,1970.

二级参考文献14

  • 1AGARWAL R P, DING S. Advances in differential forms and the A - harmonic equations[ J ]. Mathematical and Computer Modelling, 2002, 37:1393 - 1426.
  • 2DING S. The weak reverse Holder inequality for conjugate A -harmonic tensors[ Z ]. Preprint, 205 -211.
  • 3GARNETT J B. Bounded Analytic Functions[M]. New York:Academic Press, 1970.
  • 4IWANIEC T, LUTOBORSKI A. Integral Estimates for Null Lagrangians[ J ]. Arch Rational Mech Anal, 1993, 125:25 -79.
  • 5NOLDER C A. Global Integrability Theorems for A - harmonic Tensors [ J ]. J Math Anal Appl, 2000, 247 ( 1 ): 236 - 245.
  • 6WANG Y,WU C. Clobal Poincaré inequalities for Green's operator applied to the solutions of the nonhomogeneou A - harmonic equation [J].Computers and Mathematics with Applications, 2004,47:1545 - 1554.
  • 7Ding S,Nolder C A. Weighted Poincar^ Inequalities for Solu-tions to A - harmonic Equations. Illinois Journal of Mathemat-ics,2002, 46(1) : 199 -205.
  • 8Ding S, Liu B. Generalized Poincar6 Inequalities for Solutionsto the A - harmonic Equation in Certain Domains. J Math A-nal Appl,2000, 252(2) : 538 -548.
  • 9Wang Y. Two - weighted Poincar6 - type Inequalities for Dif-ferential Forms in Ls (/jl) averaging Domains. Applied Math-matics Letters, 2007,20: 1161 -1166.
  • 10Bao G,Xing Y, Wu C. Two - weight Poincar6 Inequalitiesfor the Composition Operators on Manifolds. Illinois Journal ofMathematics, 2007, 51(3) : 831 -842.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部