期刊文献+

模拟月壤对蓝细菌生长特性的影响 被引量:3

Effects of Simulated Lunar Soil on Cyanobacteria Growth Characters
下载PDF
导出
摘要 阐明地球生物在月球环境中的适应性是未来月球探索和基地构建所面临的重要课题,为此以蓝细菌为实验材料,对其在模拟月壤cas-1中的生长状态进行了研究,从生长速率、细胞形态、细胞色素含量等方面表征了月壤对蓝细菌适应性的影响。实验结果表明,四种实验蓝细菌的生长能够适应模拟月壤的影响,其生长速率在模拟月壤处理中保持与常规培养基相似的生长曲线;模拟月壤颗粒上附着生长的菌体形态与对照相比无明显变化;模拟月壤处理后的菌体内色素含量与对照条件下培养的结果无显著差异。该结果对于未来开发月壤资源和构建月球基地受控生态生保系统具有重要意义。 To clarify the biological adaptation of life on earth to the lunar environment is an important aspect of the lunar exploration and base construction in the future. Cyanobacteria was selected as the test material. Its growth in the cas-1 simulated lunar soil was studied and effects of lunar soil on its biological adaptability were observed including the growth rate, cell morphology, and cell pig- ment content etc. The results showed that these four types of cyanobacteria could all adapt to cas- 1 soil and maintained consistent growth curve with the control. There was no significant difference in morphology or pigment content as compared with the control. The result is of great significance for the lunar soil exploitation and construction of Controlled Ecological Life Support System for lunar base in the future.
出处 《载人航天》 CSCD 2014年第6期555-561,共7页 Manned Spaceflight
基金 国家自然科学基金(41101047) 中国航天医学工程预先研究项目(2012SY54B0301)
关键词 月球基地 模拟月壤 蓝细菌 生物学特性 lunar base simulated lunar soil cyanobacterium biological features
  • 相关文献

参考文献35

  • 1Olsson-Francis K, de la Torre R, Cockell C S. Isolation of novel extreme-tolerant cyanobacteria from a rock-dwelling mi- crobial community by using exposure to low Earth orbit [ J ]. Applied and environmental microbiology, 2010, 76 (7) : 2115-2121.
  • 2Zaets I, Burlak O, Rogutskyy I, growing plants for lunar bases [ J ] et al. Bioaugmentation in Advances in Space Re-search, 2011, 47(6) : 1071-1078.
  • 3Horneck G. The microbial case for Mars and its implication for human expeditions to Mars [ J ]. AetaAstronautica, 2008, 63(7) : 1015-1024.
  • 4Shilov V. Microbes and space flight [ J ]. Aerospace medi- cine, 1970, 41 (12) : 1353-1353.
  • 5Schuerger A C, Richards J T, Newcombe D A, et al. Rapid inactivation of sevenBacillus spp. under simulated Mars UV irradiation[ J]. Icarus, 2006, 181 ( 1 ) : 52-62.
  • 6Sehuerger A C, Nieholson W L. Synergistic effects of low pressure, low temperature, and CO2 atmospheres inhibit the growth of terrestrial bacteria under simulated martian condi- tions[ C ]//36th Lunar and Planetary Science Conference, Houston, TX. 2005.
  • 7Taylor G R. The Apollo 16 microbial response to space envi- ronment experiment [ R/OL]. Biomedical results of Apollo NASA, Washington, DC. (1975) [ 2014]. http://history. nasa. gov/SP-368/s4ch3, htm.
  • 8Nieholson W L, Fajardo-Cavazos P, Langenhorst F, et al. Bacterial spores survive hypervelocity launch by spallation: implications for lithopanspermia[ C ]//37th Annual Lunar and Planetary Science Conference. 2006, 37 : 1808.
  • 9Nicholson W L, Schuerger A C. Bacillus subtilis spore surviv- al and expression of germination-induced bioluminescenee af- ter prolonged incubation under simulated Mars atmospheric pressure and composition : implications for planetary protection and lithopanspermia [ J ]. Astrobiology, 2005, 5 ( 4 ) : 536- 544.
  • 10Saffary R, Nandakumar R, Spencer D, et al. Microbial sur- vival of space vacuum and extreme ultraviolet irradiation: strain isolation and analysis during a rocket flight[ J]. FEMS microbiology letters, 2002, 215 ( 1 ) : 163-168.

二级参考文献13

  • 1郑永春,欧阳自远,王世杰,邹永廖.月壤的物理和机械性质[J].矿物岩石,2004,24(4):14-19. 被引量:104
  • 2Heiken G H, Vaniman, D T, Frend B M. Lunar Sourcebook- A User's Guide to the Moon[M]. London: Cambridge University Press, 1991 : 735.
  • 3Morris R V. Determination of Optical Penetration Depth from Reflectance and Transmittance Measurements on Albite Powders [ C ]. Lunar and Planetary Science XVI. Houston: Lunar and Planetary Institute, 1985.
  • 4Pieters C M. Strength of mineral absorption feature in the transmitted component of near-infrared light: first results flora RELAB[J] J Geophys Res, 1983. 88(B11): 9534-9544.
  • 5Metzger A E, Trembka J I, Peterson L E, Reedy R C, Arnold J R. Lunar surface radioactivity: preliminary results of the Apollo 15 and 16 Gammamy spectrometer experiments[J]. Science, 1973, 179: 800-803.
  • 6Kirkici H, Rose M F, Chaloupka T. Experimental study on simulated Lunar soil: high voltage breakdown and electrical insulation characteristics [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1996, 3: 119-125.
  • 7刘祥,向天元.中国东北地区新生代火山和火山碎屑堆积物资源与灾害[M].长春:吉林大学出版社.1998.
  • 8Papike J J, Simon S B, Laul J C. The lunar regolith: chemistry, mineralogy and petrology[J]. Rev Geophys Space Phys, 1982, 20: 761- 826.
  • 9Brunfelt A O, Steinnes E. A neutron-activation scheme developed for the determination of 42 dements in lunar material[J]. Talanta, 1971, 18(12): 1197-1208.
  • 10Taylor S R, Mclennan S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell, 1985: 312.

共引文献21

同被引文献28

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部