期刊文献+

ZnB/IFR协效阻燃长玻纤聚丙烯 被引量:3

Synergistic Flame Retardant Effect of ZnB/IFRon LGFPP
下载PDF
导出
摘要 通过氧指数、垂直燃烧、热失重、锥形量热和电镜扫描研究了由Zn B和IFR组成的协效阻燃体系对长玻纤增强聚丙烯的阻燃性能和机理。结果表明:Zn B与IFR对LGFPP有协同阻燃效果,当Zn B的质量分数为2%时,阻燃效果最佳,材料的热稳定好,极限氧指数可以达到23.5%,垂直燃烧等级为UL94 V-1级;650℃的残炭量达到33.71%,相对于IFR/LGFPP复合体系提高了1.85%;总热释放速率相比较IFR/LGFPP复合体系下降了17.01%;热释放速率峰值为97.26 k W/m2。相对于IFR/LGFPP复合体系的PHHR值下降了13.61%。扫描电镜表明Zn B/IFR协效阻燃的LGPP可以形成颜色深、致密连续、孔洞直径较小且数目少的炭层。 ZnB and IFR association effect of flame retardants for flame retardant performance and flame retardant mechanism of LGFPP was studied. By limiting oxygen index, horizontal and vertical flame, thermogravimetric analysis, cone calorimetry and electron microscope scanning,the results showed that the ZnB , IFR and LGFPP had synergistic flame retardant effect,when ZnB addition amount was 2% (mass fraction) ,composite material had the well flame retardant effect and thermal stability ,the limit oxygen index could reach 23.5% and vertical combustion rating could pass UL94 V-1 rating. Carbon residue of 650 ℃ could reach 33.71% ,and was increased by 1.85% than the IFR/LGFPP composite system. Compared the total heat release rate of IFR/LGFPP composite system had fallen by 17. 01%. The peak heat release rate was 97.26 kW/m^2. Relative to the IFR/LGFPP complex system PHHR value decreased by 13.61%. Scanning electron microscopy showed that ZnB/IFR association effect of flame retardant LGPP could form deep color,continuous,dense hole diameter smaller and less number of carbon layers.
出处 《塑料》 CAS CSCD 北大核心 2014年第6期5-8,共4页 Plastics
关键词 长玻纤增强聚丙烯 硼酸锌 聚丙烯 膨胀型阻燃剂 协效阻燃 LGFPP ZnB PP IFR synergistic flame retardant
  • 相关文献

参考文献10

二级参考文献78

共引文献68

同被引文献32

  • 1赵维,周文英,李国新,杨秦莉.聚丙烯用阻燃剂研究进展[J].工程塑料应用,2005,33(12):55-57. 被引量:9
  • 2张宁,李忠恒,陶宇,赖铭,陶国良.长纤维增强聚乙烯复合材料的研究[J].工程塑料应用,2007,35(1):21-25. 被引量:12
  • 3M6narda R, Negrella C, Ferrybet L, et al. Synthesis of biobased phosphorus-containing flame retardants for epoxy thermosets comparison of additive and reactive approaches[J]. Polymer Degradation and Stability,2015,120:300-312.
  • 4Dasaria A, Yu Zhongzhen, Cai Guipeng, et al .Recent developments in the fire retardancy of polymeric materials[J]. Progress in Polymer Science, 2013,38(9): 1 357-1 387.
  • 5Zuo Xiaoling, Shao Huiju, Zhang Daohai, et al. Effects of thermal-oxidative aging on the flammability and thermal-oxidative degradation kinetics of tris(tribromophenyl) cyanurate flame retardant PA6/LGF composites[J]. Polymer Degradation andStability, 2013,98(12): 2 774-2 783.
  • 6Cai Yibing, Wei Qufu, Huang Fenglin, et al. Preparation and properties studies of halogen-free flame retardant form-stable phase change materials based on paraffin / high density polyethylene composites[J]. Applied Energy, 2008,85(8): 765-775.
  • 7Lu Shuiyu, Hamerton I. Recent developments in the chemistry of halogen-free flame retardant polymers[J]. Progress in Polymer Science, 2002, 27(8): 1 661-1 712.
  • 8Chert Xuecheng, Ding Yaping, Tang Tao. Synergistic effect of nickel formate on the thermal and flame-retardant properties of polypropylene[J]. Polymer International, 2005,54(6):904-908.
  • 9Lu Hongdian, Song Lei, Hu Yuan. A review on flame retardant technology in China. Part II: flame retardant polymeric nano- composites and coatings[J]. Polymers for Advanced Technologies, 2011,22(4):379-394.
  • 10Zhang Yah, Li Xiaonan, Cao Zhenhu, et al. Synthesis of zinc phosphonated poly (ethylene imine) and its fire-retardant effect in low-density polyethylene[J]. Industrial & Engineering Chemistry Research,2015,54(13):3 247-3 256.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部