期刊文献+

重型柴油机涡轮复合增压技术的研究与应用 被引量:4

Research and application of the turbo-compound technology on a heavy duty diesel engine
下载PDF
导出
摘要 研究了动力涡轮与曲轴之间的传动比对柴油机动力性和经济性的影响,以便将带可变截面增压器(VGT)的涡轮复合系统应用于重型柴油机上。构建了一维模型,以便模拟涡轮复合增压发动机,并优化动力涡轮和涡轮增压器与发动机的匹配。在某一台常规11 L的重型柴油机的基础上,研制了涡轮复合柴油机试验样机,并进行试验,以研究增压器开度对柴油机性能的影响,并寻求最优控制策略。结果表明:该涡轮复合增压发动机的全工况外特性优于原机,比油耗(BSFC)平均改善3%,最大改善8%。这表明:涡轮复合增压是一项能够满足未来柴油机节能减排要求的关键技术。 The effect of transmission ratio between power turbine and diesel engine crank power on the performances and the fuel economy was investigated for the application of turbo-compound system with Variable Geometry Turbocharger (VGT) on a heavy duty diesel engine. A one-dimensional model was established to simulate the turbo-compound engine and optimize the matching of the power turbine and turbocharger with the engine. A turbo-compound prototype diesel engine was developed based on a conventional 11-L heavy-duty diesel engine, and then tested to investigate the impacts of the openness of the VGT on the turbo-compound engine performances, and to ifne the most optimal control strategy. The results show that the turbo-compound engine is better than the original machine under engine ful load operation conditions. The brake speciifc fuel consumption (BSFC) increases 3% on average with a maximum BSFC of 8%. Therefore, turbo-compounding is a key technology to satisfy the future requirements of diesel engine’s energy conservation and emission reduction.
出处 《汽车安全与节能学报》 CAS CSCD 2014年第4期401-406,共6页 Journal of Automotive Safety and Energy
基金 国家"九七三"重点基础研究发展计划(2011CB707204)
关键词 重型柴油机 涡轮复合 可变截面涡轮增压器(VGT) 燃油经济性 比率油耗(BSFC) heavy-duty diesel engine turbo-compound variable geometry turbocharger (VGT) fuel economy brake specific fuel consumption (BSFC)
  • 相关文献

参考文献12

  • 1Leonard J. History of the turbo compound [Z/OL]. [2012-09-10]. http://www.rotaryeng.net/sum-turbo-comp.html.
  • 2Tennant D, Walsham B. The turbo compound dieselengine [R]. SAE Tech Paper, 890647.
  • 3Teng H, Regner G,Cowland C. Waste heat recovery ofheavy-duty diesel engines by organic Rankine cycle, PartII: Working fluids for WHR-ORC [R]. SAE Tech Paper,2007-01-0543.
  • 4Vaja I, Gambarotta A. Internal combustion engine (ICE)bottoming with organic Rankine cycles (ORCs) [J].Energy, 2010, 35(2): 1084-1093.
  • 5Bailey M, Comparative evaluation of three alternativepower cycles for waste heat recovery from the exhaust ofadiabatic diesel engines [R], NASA Tech Memo, 86953,1985.
  • 6Jansen W, Heitmann A M,Hanawa M. Recovery ofAutomobile Engine Exhaust Energy [R]. ASME GT2008-50801, 2010.
  • 7Ismail Y, Durrieu D, Menegazzi P, Chesse P, et al.Potential of exhaust heat recovery by turbo compounding[R]. SAE Tech Paper, 2012-01-1603.
  • 8Ishii M. System optimization of turbo-compound engine,First Report: Compressor and turbine pressure ratio [R].SAE Tech Paper, 2009-01-1940.
  • 9Ishii M. System optimization of turbo-compound engineSecond Report: Effects of compression ratio [R]. SAETech Paper, 2012-01-1734.
  • 10Hopmann U, Algrain M. Diesel engine electric turbocompound technology [R]. SAE Tech Paper, 2003-01-2294.

同被引文献16

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部