期刊文献+

小麦幼苗根系抗氧化酶对镍胁迫的响应 被引量:9

Nickel-induced Oxidative Stress and Responses of the Antioxidant Enzymes in Roots of Triticum aestivum L. Seedlings
下载PDF
导出
摘要 为阐明Ni对小麦(Triticum aestivum L.)毒害的生理生化机理,研究了不同浓度Ni(0、50、100、200、400μmol·L^-1)对小麦幼苗根系生长和活性氧代谢的影响。结果表明,50μmol·L^-1Ni处理小麦幼苗6 d对根系生长和活性氧含量及抗氧化酶活性无显著影响。100~400μmol·L-1Ni处理时,随着Ni处理浓度增加,根系鲜重和长度逐渐降低,H2O2和MDA含量及O2-·产生速率则逐渐升高;超氧化物歧化酶(SOD)、谷胱甘肽还原酶(GR)、谷胱甘肽转硫酶(GST)、谷胱甘肽过氧化物酶(GPX)和葡萄糖-6-磷酸脱氢酶(G6PDH)活性逐渐提高,抗坏血酸过氧化物酶(APX)活性先上升后下降,100μmol·L-1Ni浓度时APX活性最大;过氧化物酶(POD)活性则无显著变化。采用聚丙烯酰胺凝胶电泳分析抗氧化酶同工酶谱发现,100μmol·L-1Ni处理诱导新的同工酶带APX-3和APX-4;对照组SOD出现了2条同工酶带,G6PDH出现4条同工酶带;100和400μmol·L-1Ni处理增强SOD和G6PDH同工酶带活性。由此可见,过量Ni处理抑制小麦根系生长、诱导活性氧水平升高而导致氧化胁迫,而SOD、APX、GST和GPX等抗氧化酶活性增加可能是根系为抵御氧化胁迫而产生的一种适应性响应。 To illustrate the physiological and biochemical mechanism of Ni on the toxic effects of wheat. Effects of different concentrations Ni (0, 50, 100, 200 and 400 μmol. L^-1) on the growth of roos and the metabolism of reactive oxygen species (ROS) in roots of early Triticum aestivum L. seedlings were explored. The results indicated that treatment with 50 μ mol. L^-1 Ni for 6d had no significant effect on roots growth, the contents of reactive oxygen species and activities of antioxidative enzymes. 100-400μmol.L^-1 of Ni resulted in a decrease of fresh weight and length of roots, but the contents of H2O2 and MDA, production rate of O2 -·increased with increasing Ni concentration. The activities of superoxide dismutase( SOD, EC 1. 1.5. 1. 1 ) , glutathione reductase ( GR, EC 1.6.4.2) , glutathione S- tansferase ( GST, EC2.5.1.18 ) and glucose - 6 - phosphate dehydrogenase ( G6PDH, EC 1.1. 1.49) augmented gradually with increasing Ni concentration, being the maximum at 400 μmol. L^- 1 of Ni. Ascorbate peroxidase ( APX, EC 1. 11. 1. 11) increased first, and then depressed, being the maximum at 100 μmol.L^-1 of Ni, while the activities of peroxidase (POD, EC 1. 11. 1.7 ) remained unaltered under the tested Ni concentrations. Polyacrylamide gel electrophoresis native analysis revealed that 100μ mol.L^-1 of Ni induced two additional isozymes bands of APX- 3 and APX -4. Two isozymes bands of SOD and four bands of G6PDH in the control seedlings were found and there was a continuous enhancement in the intensity of SOD and G6PDH bands in roots treated with 100 and 400 μ mol.L^-1Ni. The present study confirmed that excess Ni inhibits root growth and induced oxidative stress by inducing ROS formation, while a increase of activities of SOD,APX,GST and GPX appears adaptive response of wheat roots against Ni-induced oxidative stress, not being able to eliminate ROS in roots.
出处 《核农学报》 CAS CSCD 北大核心 2014年第9期1708-1714,共7页 Journal of Nuclear Agricultural Sciences
基金 安徽高校省级自然科学研究重大项目(ZD200910) 安徽科技学院重点学科项目(AKXK20102-1)
关键词 小麦 抗氧化酶 谷胱甘肽转硫酶 Triticum aestivum L Nickel Anti-oxidative enzymes Glutathione S-tansferase
  • 相关文献

参考文献29

  • 1Gajewska E, Niewiadomiska E, Tokarz K, Slaba M, Sklodowska M. Nickel-induced changs in carbon metabolism in wheat shoots I J]. Journal of Plant Physiology, 2013, 170(4) : 369 -377.
  • 2Baccouch S, Chaoui A, Ferjani E E. Nickel-induced oxidative damage and antioxidaut responses in Zea mays shoots [ J]. Journal of Plant Nutrition, 2001, 24 (7) : 1085 - 1097.
  • 3Gomes- Junior R A, Moldes C A, Delite F S, Gratao P L,Mazzafera P, Lea P J, Azevedo R A. Nickel elicits a fast antioxidant response in coffea arabica cells [ J ]. Plant Physiology and Biochemistry, 2006, 44(5/6) : 420 -429.
  • 4Boominathan R, Doran P M. Ni-induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii [J]. New Phytologist, 2002, 156(2) : 205 -215.
  • 5Mittler R, Vanderauwera S, Gollery M, Breusegem F V. Reactive oxygen gene network of plants [ J]. Trends in Plants Science, 2004, 9(10) : 490 -498.
  • 6Collin VC, Eymery F, Genty B, Rey P, Havaux M. Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress [ J ]. Plant Cell Environment, 2008, 31 ( 2 ) : 244 - 257.
  • 7Wang S H, Zhang H, Zhang Q, Jin G M, Jiang S J, Jiang D, He Q Y, Li Z P. Copper-induced oxidative stress and responses of the antioxidant system in roots of Medicago sativa [ J ]. Journal of Agronomy and Crop Science, 2011 , 197 (6) : 418 - 429.
  • 8Neill S, Desikan R, Hancock J. Hydrogen peroxide signaling [ J]. Current Opinion in Plant Biology, 2002, 5 (5) : 385 - 395.
  • 9Wang Y S, Yang Z M. Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. [ J ]. Plant Cell Physiology, 2005, 46(12) : 1915 - 1923.
  • 10Knorzer O C, Durner J, Boger P. Alteration in the antioxidative system of suspension cultivated soybean cells (Glycine max) induced by oxidative stress[ J ]. Physiologia Plantarum, 1996, 97 (2) : 388 -396.

二级参考文献43

共引文献59

同被引文献154

引证文献9

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部