期刊文献+

基于局部特征匹配的多目标跟踪算法 被引量:2

Part feature matching based multi-target tracking
下载PDF
导出
摘要 为解决多目标跟踪过程中因遮挡导致跟踪失败的问题,提出一种基于局部特征匹配的跟踪算法。在卡尔曼滤波跟踪框架下,根据目标数据关联的结果判断目标的状态并进行针对性处理。当目标处于相互遮挡的状态时,利用目标的局部模板在当前帧进行匹配获取目标候选区域,利用改进的距离加权彩色直方图计算候选区域与局部模板的相似度,结合直方图的相似度和卡尔曼预测确定目标的位置。实验结果表明,在满足实时性的要求下,该方法能够有效地处理目标的遮挡问题。 To solve the occlusion problem in multi-target tracking,apart feature matching based tracking algorithm was proposed.In the Kalman filter framework,the state of a targets was confirmed via the result of feature association.Each state was processed specially.When a target was in the state of mutual occlusion,the likely candidate regions were selected through part template matching.Then the similarity between the candidate region and the part template was calculated using the improved distance weighted color histogram.At last,combining the similarity and the Kalman filter prediction,the target’s location was determined.The experimental results show that the proposed algorithm can handle the occlusion problem effectively and meet the real-time requirement.
出处 《计算机工程与设计》 CSCD 北大核心 2014年第12期4306-4310,共5页 Computer Engineering and Design
基金 四川省教育厅基金项目(12zd1005) 西南科技大学网络融合实验室开放基金项目(2011-2013) 西南科技大学博士基金项目(10zx7135)
关键词 多目标跟踪 卡尔曼滤波 局部特征 模板匹配 距离加权直方图 multi-target tracking Kalman filter part feature template matching distance weighted histogram
  • 相关文献

参考文献11

  • 1王炜,郭毓,俞信.基于卡尔曼滤波的多区域关联运动目标跟踪[J].计算机应用,2012,32(11):3174-3177. 被引量:10
  • 2Guang Shu,Afshin Dehghan,Omar Oreifej.Part-based multiple-person tracking with partial occlusion handling[C]//Computer Vision and Pattern Recognition,2012:1815-1821.
  • 3刘云海,全晓臣.基于多线索融合的抗遮挡目标跟踪算法[J].浙江大学学报(工学版),2009,43(7):1208-1213. 被引量:7
  • 4Zhang Zui,Hatice Gunes,Massimo Piccardi.Tracking people in crowds by apart matching approach[C]//Advanced Video and Signal Based Surveillance,2008:88-95.
  • 5Pedro F Felzenszwalb,Ross B Girshick,David McAllester,et al.Object detection with discriminatively trained part-based models[J].Pattern Analysis and Machine Intelligence,2010,32(9):1627-1645.
  • 6冯增光,张炯,宁纪锋,颜永丰.基于角点检测的实时目标跟踪方法[J].计算机工程与设计,2012,33(10):3892-3897. 被引量:3
  • 7Xing Junliang,Ai Haizhou,Lao Shihong.Multi-object tracking through occlusions by local tracklets filtering and global tracklets association with detection responses[C]//Computer Vision and Pattern Recognition,2009:1200-1207.
  • 8Bo Wu,Ram Nevatia.Detection and tracking of multiple,partially occluded humans by Bayesian combination of edge let based part detectors[J].International Journal of Computer Vision,2007,75(2):247-266.
  • 9Irshad Ali,Matthew N Dailey.Multiple human tracking in high-density crowds[J].Image and Vision Computing,2012,30(12):966-977.
  • 10刘涛,程小平,向本科.改进的基于颜色的粒子滤波目标跟踪算法[J].计算机工程与设计,2010,31(8):1750-1752. 被引量:8

二级参考文献39

  • 1高勤,李志强,都学新.一种新型自适应卡尔曼滤波算法[J].现代雷达,2001,23(6):29-34. 被引量:18
  • 2常发亮,马丽,乔谊正.遮挡情况下基于特征相关匹配的目标跟踪算法[J].中国图象图形学报,2006,11(6):877-882. 被引量:16
  • 3宋亚杰,谢守勇.机器视觉技术在金莲花灌溉中的应用研究[J].西南农业大学学报(自然科学版),2006,28(4):659-662. 被引量:12
  • 4万琴,王耀南.一种多运动目标检测、跟踪方法研究与实现[J].计算机应用研究,2007,24(1):199-202. 被引量:16
  • 5CHANG T H, GONG S. Tracking Multiple People under Occlusion using Multiple cameras [ EB/OL]. (2000-02- 26 ) [ 2009-07-23 ]. http: // www. comp. leeds. ac. uk/bmvc2008/proceedings/2000/papers/p57. pdf.
  • 6DOCCKSSTADER S L,TEKAAIP A M. Multiple Camera Fusion for Multi-object Tracking [ EB/OL ]. ( 2001-07-08 ) [ 2009-07-23 ]. http://www.computer.org/portal/web/csdl/ abs/proceedings/womot/2001/1171/00/11710095abs.htm.
  • 7KAALMAN R E. A new approach to linear filtering and prediction problems [ J ]. Journal of Basic Engineering, 1960,82( 1 ) : 35-45.
  • 8YANG Sheng-Yan, CHIOU T. Background Modeling from GMM Likelihood Combined with Spatial and Color Coherency [ EB/OL ]. ( 2006-05-21 ) [ 2009-07-21 ]. http: // es. nthu. edu. tw/-ethsu/papers/paper _ ICIP06. pdf.
  • 9MARCEENARO L, FERRARI M, MARCHESOTTI L, et al. Multiple Object Tracking under Heavy Occlusions by Using Kalman Filters Based on Shape Matching [ EB/ OL ]. (2000-01-01) [ 2009-07-21 ]. http://d. wanfangdata. com. cn/NSTLHY_NSTL_HY308248. aspx.
  • 10Arulampalam M,Maskell S,Gordon N.A tutorial on particle filters for online non-linear/non-Gaussian Bayesian tracking [J].IEEE Transactions on Signal Processing,2002,50(2): 174- 188.

共引文献42

同被引文献11

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部