期刊文献+

样本量对叶面积指数遥感经验建模精度影响研究 被引量:2

Effects of Sample Size on LAI Accuracy by Remote Sensing Empirical Modeling
下载PDF
导出
摘要 遥感经验模型反演方法是叶面积指数(LAI,Leaf Area Index)反演的重要途径,而实测数据又是经验统计模型的基本数据来源之一,但对于地面采样样本量对LAI遥感经验建模的影响研究较少。文章对单一地表覆盖类型的研究区采用不同样本量多次随机采样获取的采样数据来构建经验模型反演LAI,探究样本量对于建模精度的影响。研究结果表明:1遥感模型精度评估指数(RMAI,Remote Sensing Model Accuracy Index)随样本量呈幂函数形式逐渐减小;2在样本数量小于30时RMAI较为敏感,建模精度较差,当样本量达到45左右时,其精度达到稳定状态;3样本量越大的采样方案构建的遥感经验模型越稳定;4综合RMAI平均值及标准差的变化趋势,当样本量达到40时采样数据即可构建精度较高且稳定的LAI经验统计模型。 Empirical-model-based inversion is an important approach to the retrieval of leaf area index (LAI). The ground sampling data is the primary data resource of Empirical modeling, and the sample size affects directly the precision of the empirical model. However, few studies were investigated about the effects of sample size on remote sensing empirical modeling accuracy of LAI. This article, based on the ground sample data sampled repeatedly with different sample sizes, built an empirical model of LAI to explore the effects of sam- ple size on modeling accuracy. The results showed that : ①remote sensing model accuracy index ( RMAI ) decreases with increase in sample size in the power function form ; ② when the number of samples is less than 30, RMAI is more sensitive and the modeling accu- racy is lower,while the sample size approaches 45, the modeling accuracy reaches a steady state; ③ the larger the sample size, the more stable the modeling based on sample data ; ④ giving consideration to the change trends of the mean and standard deviation of RMAI,it comes to the conclusion that the sample data,whose sample size reaches 40 ,can build a stable empirical model with high precision.
出处 《土壤与作物》 2014年第4期151-156,共6页 Soils and Crops
基金 国家自然科学基金项目(40671137) 国家863项目(2009AA12z136)
关键词 样本量 随机采样 LAI 经验模型 RMAI sample size random sampling LAI empirical model RMAI
  • 相关文献

参考文献12

  • 1L. Fan,Y. Gao,H. Brück,Ch. Bernhofer.Investigating the relationship between NDVI and LAI in semi-arid grassland in Inner Mongolia using in-situ measurements[J].Theoretical and Applied Climatology (-).2009(1-2)
  • 2Jiangui Liu,Elizabeth Pattey,Guillaume Jégo.Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons[J].Remote Sensing of Environment.2012
  • 3Daoyi Chen,Jingfeng Huang,Thomas J. Jackson.Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands[J].Remote Sensing of Environment.2005(2)
  • 4李凤秀,张柏,宋开山,王宗明,刘焕军,杨飞.玉米叶面积指数与高光谱植被指数关系研究[J].遥感技术与应用,2007,22(5):586-592. 被引量:41
  • 5Roshanak Darvishzadeh,Andrew Skidmore,Martin Schlerf,Clement Atzberger.Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland[J].Remote Sensing of Environment.2008(5)
  • 6蒙继华,吴炳方,李强子.全国农作物叶面积指数遥感估算方法[J].农业工程学报,2007,23(2):160-167. 被引量:44
  • 7David P. Turner,Warren B. Cohen,Robert E. Kennedy,Karin S. Fassnacht,John M. Briggs.Relationships between Leaf Area Index and Landsat TM Spectral Vegetation Indices across Three Temperate Zone Sites[J].Remote Sensing of Environment.1999(1)
  • 8Quan Wang,Samuel Adiku,John Tenhunen,André Granier.On the relationship of NDVI with leaf area index in a deciduous forest site[J].Remote Sensing of Environment.2004(2)
  • 9Tao Cheng,David Ria?o,Alexander Koltunov,Michael L. Whiting,Susan L. Ustin,Jenna Rodriguez.Detection of diurnal variation in orchard canopy water content using MODIS/ASTER airborne simulator (MASTER) data[J].Remote Sensing of Environment.2013
  • 10Roberto Colombo,Dario Bellingeri,Dante Fasolini,Carlo M. Marino.Retrieval of leaf area index in different vegetation types using high resolution satellite data[J].Remote Sensing of Environment.2003(1)

二级参考文献57

共引文献98

同被引文献44

  • 1何勇,董文杰,季劲均,丹利.基于AVIM的中国陆地生态系统净初级生产力模拟[J].地球科学进展,2005,20(3):345-349. 被引量:72
  • 2李世华,牛铮,李壁成.植被净第一性生产力遥感过程模型研究[J].水土保持研究,2005,12(3):126-128. 被引量:31
  • 3王希群,马履一,贾忠奎,徐程扬.叶面积指数的研究和应用进展[J].生态学杂志,2005,24(5):537-541. 被引量:284
  • 4Chen J M, Cihlar J. Retrieving leaf area index of boreal conifer forests using Landsat TM images[J]. Remote Sensing of Environment, 1996, 55(2): 153-162.
  • 5Chen J M, Black T A. Defining leaf area index for non-flat leaves[J]. Plant, Cell and Environment, 1992, 15(4): 421-429.
  • 6Sellers P J, Mintz Y, Sud Y C, et al. A simple biosphere model (SiB) for use within general circulation models[J]. Journal of the Atmospheric Sciences, 1986,43(6): 505-531.
  • 7Gholz H L. Environmental limits on above-ground net primary production, leaf area, and biomass in vegetation zones of the Pacific North West[J]. Ecology, 1982, 63(2): 469-481.
  • 8Jordan C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology, 1969, 50(4): 663-666.
  • 9Asrar G, Fuchs M, Kanemasu E T, et al. Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat[J]. Agronomy Journal, 1984, 76(2): 300-306.
  • 10Myneni R B, Ramakrishna R, Nemani R, et al. Estimation of global leaf area index and absorbed PAR using radiative transfer models[J]. Geoscience and Remote Sensing, IEEE Transactions on, 1997, 35(6): 1380-1393.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部