期刊文献+

一种基于边界节点识别的复杂网络局部社区发现算法 被引量:13

Detecting Local Community Structure Based on the Identification of Boundary Nodes in Complex Networks
下载PDF
导出
摘要 在网络日益巨大化和复杂化的背景下,挖掘全局网络的社区结构代价较高。因此,基于给定节点的局部社区发现对研究复杂网络社区结构有重要的应用意义。现有算法往往存在着稳定性和准确性不高,预设定阈值难以获取等问题。该文提出一种基于边界节点识别的复杂网络局部社区发现算法,全面比较待合并节点的连接相似性进行节点聚类;并通过边界节点识别控制局部社区的规模和范围,从而获取给定节点所属社区的完整信息。在计算机生成网络和真实网络上的实验和分析证明,该算法能够自主挖掘给定节点所属的局部社区结构,有效地提升局部社区发现稳定性和准确率。 In the context that social network becomes more and more complicated and huge, it is extremely difficult and complex to mine the global community structures of large networks. Therefore, the local community detection has important application significance for studying and understanding the community structure of complex networks. The existing algorithms often have some defects, such as low accuracy and stability, the preset thresholds difficult to obtain, etc.. In this paper, a local community detecting algorithm is proposed based on boundary nodes identification, and a comprehensive consideration of the external and internal link similarity of neighborhood nodes for community clustering is given. Meanwhile, the method can effectively control the scale and scope of the local community based on the boundary node identification, so as the complete structure information of the local community is obtained. Through the experiments on both computer-generated and real-world networks, the results show that the proposed algorithm can automatically mine local community structure from the given node without predefined parameters, and improve the performance of local community detection in stability and accuracy.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第12期2809-2815,共7页 Journal of Electronics & Information Technology
基金 国家863计划项目(2011AA010604) 国家重大科技专项(2012ZX03006002)资助课题
关键词 复杂网络 社区发现 局部社区:边界节点识别 Complex networks Community detection Local community Identification of boundary nodes
  • 相关文献

参考文献18

  • 1Clauset A. Finding local community structure in networks[J].Physical Review E, 2005, 72(2): 026132..
  • 2Radicchi F, Castellano C, Cecconi F. et al.. Defining andidentifying communities in networks [J]. Proceedings of theNational Academy of Sciences of the United States of America,2004, 101(9): 2658-2663.
  • 3Chen Q, Wu T T, and Fang M. Detecting local communitystructures in complex networks based on local degree centralnodes[J]. Physica A, 2013,392(3): 529-537.
  • 4Wu Y J, Huang H, Hao Z F, et al" Local communitydetection using link similarity [J]. Journal of ComputerScience and Technology, 2012, 27(6): 1261-1268.
  • 5潘磊,金杰,王崇骏,谢俊元.社会网络中基于局部信息的边社区挖掘[J].电子学报,2012,40(11):2255-2263. 被引量:28
  • 6Qi X,Tang W, Wu Y, et al" Optimal local communitydetection in social networks based on density drop ofsubgraphs[J]. Pattern Recognition Letters, 2014, 36(1): 46-53.
  • 7Newman M E J. Modularity and community structure innetworks [J]. Proceedings of National Academy of Sciences ofthe United States of America, 2006, 103(23): 8577-8582.
  • 8Fouss F, Pirotte A, Renders J M, et al" Random-walkcomputation of similarities between nodes of a graph withapplication to collaborative recommendation [J]. IEEETransactions on Knowledge and Data Engineering, 2007,19(3): 355-369.
  • 9Feng Z, Xu X,Yuruk N, et al.. A Novel Similarity-basedModularity Function for Graph Partitioning[M]. BerlinHeidelberg Springer, Data Warehousing and KnowledgeDiscovery, 2007: 385-396.
  • 10Zhang Aidong. Protein Interaction Networks[M]. NewYork:Cambridge University Press, 2009: 44-47.

二级参考文献39

  • 1B W Kemighan, S Lin. An efficient heuristic procedure for par- titioning graphs I J]. The Bell system technical journal, 1970,49 (1) :291 - 307.
  • 2M Belkin, P Niyogi. Laplacian eigenmaps and stxtral tech- niques for embedding and clustering I A]. Advances in Neural Information Prcr_essing Systems I C ]. Vancouver, Canada: M IT Press,2001,14:585 - 591.
  • 3S White, P Smyth. A spectral clustering approach to finding communities in graphs [ A. Kamath C,Gotximan A,eds.Pm- ceedings of the 5th SIAM International Conference on Data Mining [ C]. Philadelphia: SIAM, 2005.76 - 84.
  • 4F Wu, B A Huberman. lmding communities in linear time: a physics approach I J ]. The European Physical Journal B-Con- densed Matter and Complex Systems, 2004,38 (2) : 331 - 338.
  • 5H Zhou. Distance, Dissimilarity index, and network community structure [ J] .Physical Review E,2003,67(6) :061901.
  • 6P Ports, M Latapy. Computing communities in large networks using random walks I A]. Proceedings of Computer and Infor- marion Sciences,-ISCIS 2005 [ C ]. Berlin, Heidelberg: SpringerVerlag, 2005,3733 ( 31 ) : 284 - 293.
  • 7M Girvan, M E J Newman. Community slructttre in social and biological networks [ J]. Proceedings of National Academy of Science of the United States of America, 2002, 99:7821 - 7826.
  • 8M E J Newman,M Girvan. Finding and evaluating community structure in networks [ J ]. Physical Review E, 2004, 69: 026113.
  • 9M E J Newman. Fast algorithm for detecting community struc- ture in networks [ J] .Physical Review E,2004,69:066133.
  • 10F Radicchi, C Castellano, F Cecconi, V Loreto, D Parisi. Defining and identifying communities in networks [ J ]. Pro- ceedings of the National Academy of Sciences of the United States of America, 2004,101(9) :2658 - 2663.

共引文献27

同被引文献66

  • 1徐臻,高仲合.基于CDN缓存技术和组播技术的视频点播研究[J].电脑知识与技术,2007(6):1403-1404. 被引量:2
  • 2Newman M. Detecting community structure innetworks [J]. European Physical Journal B, 2004, 38(2):321-330.
  • 3Takaffoli M. Community evolution in dynamic social networks-- challenges and problems [C]//Data Mining Workshops (ICDMW), 2011 IEEE llth International Conference on. IEEE, 2011: 1211- 1214.
  • 4Giatsoglou M, Vakali A. Capturing social data evolution using graph clustering[J]. IEEE Internet Computing, 2013, 17(1): 74-79.
  • 5Cuzzocrea A, Folino F, Pizzuti C. DynamicNet: an effective and efficient algorithm for supporting community evolution detection in time-evolving information networks [C]//Proceedings of the 17th International Database Engineering & Applications Symposium. ACM, 2013: 148-153.
  • 6l'akaffoli M, Sangi F, Fagnan J, et al. Community evolution mining in aynamic social networks [J]. Procedia-Social and Behavioral Sciences, 2011, 22: 49-58.
  • 7Nguyen N P, Dinh T N, Xuan Y, et al. Adaptive algorithms for detecting community structure in dynamic social networks [C]// INFOCOM, 2011 Proceedings IEEE. IEEE, 2011: 2282-2290.
  • 8Mucha P J, Richardson T, Macon K, et al. Community structure in time-dependent, mnltiseale, and multiplex networks [J]. Science, 2010, 328(5980): 876-878.
  • 9Bassett D S, Porter M A, Wymbs N F, et al. Robust detection of dynamic community structure in networks [J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2013, 23 (1): 013142.
  • 10Chan J, Liu W, Leckie C, et al. ScqiBloc: mining multi-time spanning blockmodels in dynamic graphs [C]//Proceedings of the 18th ACM SIGKI)D international conference on Knowledge discovery and data mining. ACM, 2012: 651-659.

引证文献13

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部