期刊文献+

基于信息总不确定度的冲突证据组合修正方法 被引量:6

Combination of Conflicting Evidence by Using the Total Uncertainty Degree of Information
下载PDF
导出
摘要 现有的冲突证据组合修正方法仅从证据距离、模糊度等描述信息不确定性的一个或几个方面对证据体的基本概率分配函数进行修正,对证据的关联性考虑不够充分。该文提出基于信息总不确定度的冲突证据组合修正新方法。该文在笛卡尔乘积的基础上定义提出组合总不确定度的概念,并给出根据融合前各证据体总不确定度预测融合后证据体组合总不确定度值域的方法。对冲突证据,利用各证据体总不确定度与组合总不确定度的比值,求出对证据基本概率分配函数的修正权重,再根据Dempster规则进行加权平均组合。信息融合的算例分析结果表明,与现有方法相比,该方法融合结果的总不确定度更小,更有利于融合结果的后续决策分析与数据应用。 The common way of conflicting evidence combination is to modify the basic probability mass assignment of evidence bodies by a certain indicator which can reflect or describe the information uncertainty of the conflicting evidence. In existing conflicting evidence combination methods, indicators such as the distance of evidence and ambiguity are used. However, these indicators reflect only one or several aspects of the characteristics of the conflicting information uncertainty. A novel method of conflicting evidence combination is proposed based on the total uncertainty degree of information. The concept of combined total uncertainty of information is defined based on Cartesian product. An approach of predicting the range of fused information's combined total uncertainty degree by the total uncertainty degree of each body of evidence before information fusion is also presented. Weights for each evidence body are obtained according to the total uncertainty degree of each evidence body and the combined total uncertainty on their Cartesian product. Then, the bodies of conflicting evidence are combined by the weighted average according to Dempster's rule. Results of numerical examples of information fusion show that, compared with the existing approaches, the total uncertainty degree of the combined information obtained by the proposed method is smaller, which means the combined information is more helpful to subsquent decision analysis and data applications.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第12期2909-2914,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(50905013 51211130114) 中央高校基本科研业务费专项资金(FRF-TP-09-014A)资助课题
关键词 信息融合 总不确定度:冲突证据 Information fusion Total uncertainty degree Conflicting evidence
  • 相关文献

参考文献18

  • 1Mahler R. Statistical Multisource-multitarget InformationFusion[M]. Boston: Artech House Publishers, 2007: 119-154.
  • 2Ferguson L E, Braten I, and Str0ms0 H I. Epistemic cognitionwhen students read multiple documents containingconflicting scientific evidence: a think-aloud study [Jj ?Learning and Instruction, 2012, 22(2): 103-120.
  • 3Smets P. The combination of evidence in the transferablebelief model [J]. IEEE Transactions on Pattern Analysis andMachine Intelligence, 1990, 12(5): 447-458.
  • 4Yager R R. On the Dempster-Shafer framework and newcombination rules[J]. Information Sciences, 1987, 41(2):93-137.
  • 5Smarandache F and Dezert J. Advances and Applications ofDSmT for Information Fusion (Collected works), SecondVolume: Collected Works[M]. Ann Arbor: Infinite Study,2006: 89-112.
  • 6李朝真,程新明,兰旭辉,张亚兵.经典DSmT证据组合规则的随机集表示[J].软件导刊,2011,10(11):45-48. 被引量:2
  • 7Murphy C K. Combining belief functions when evidenceconflicts[J]. Decision Support Systems, 2000, 29(1): 1-9.
  • 8Yong D, Wen K S, 2hen F Z, et al. Combining belieffunctions based on distance of evidence [J]. Decision SupportSystems, 2004, 38(3): 489~493.
  • 9韩德强,邓勇,韩崇昭,杨艺,蒋雯,侯志强.利用不确定度的冲突证据组合[J].控制理论与应用,2011,28(6):788-792. 被引量:38
  • 10肖建于,童敏明,朱昌杰,范祺.基于pignistic概率距离的改进证据组合规则[J].上海交通大学学报,2012,46(4):636-641. 被引量:23

二级参考文献60

  • 1叶清,吴晓平,宋业新.基于权重系数与冲突概率重新分配的证据合成方法[J].系统工程与电子技术,2006,28(7):1014-1016. 被引量:33
  • 2郭华伟,施文康,刘清坤,邓勇.一种新的证据组合规则[J].上海交通大学学报,2006,40(11):1895-1900. 被引量:57
  • 3关欣,孙晓明,何友.一种冲突证据的融合方法[J].电子科技大学学报,2007,36(1):30-32. 被引量:13
  • 4SHAFER G. A Mathematical Theory of Evidence[M]. Princeton: Princeton University Press, 1976.
  • 5DEMPSTER A P. Upper and lower probabilities induced by a mul- tivalued mapping[J]. Annals of Mathematical Statistics, 1967, 38(2): 325 - 339.
  • 6ZADEH L A. Review of Shafer's a mathematical theory of evi- dence[J]. A1Magazine, 1984, 5(3): 81 - 83.
  • 7ZADEH L A. A simple view of the Dempster-Shafer theory of evi- dence and its implication for the rule of combination [J]. AI magazine, 1986, 2(7): 85 - 90.
  • 8SMARANDACHE E DEZERT J DSmT for Information Fusion[M] Press, 2009.
  • 9Applications and Advances of Rehoboth: American Research LEFEVRE E, COLOT O, VANNOORENBERGHE P. Belief func- tions combination and conflict management[J]. Information Fusion, 2002, 3(2): 149- 162.
  • 10SMETS E Data fusion in the transferable belief model[C]//Proceed- ings of of the 3rd International Conference on Information Fusion. Sunnyvale, CA, USA: ISIF, 2000:21 - 33.

共引文献67

同被引文献73

引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部