期刊文献+

基于近邻传播聚类与核匹配追踪的遥感图像目标识别方法 被引量:8

Technique of Remote Sensing Image Target Recognition Based on Affinity Propagation and Kernel Matching Pursuit
下载PDF
导出
摘要 核匹配追踪算法在生成函数字典的过程中常采用贪婪算法进行全局最优搜索,导致算法学习时间过长。该文针对这一缺陷,提出一种基于近邻传播(Affinity Propagation,AP)聚类与核匹配追踪相结合的分类方法(AP-Kernel Matching Pursuit,AP-KMP),该方法利用聚类算法来优化核匹配追踪算法中的字典划分过程,使用近邻传播聚类将目标数据集划分为若干小型字典空间,随后KMP算法在小型字典空间进行局部搜索,从而缩短学习时间。针对部分UCI数据集和遥感图像数据集,分别采用AP-KMP算法与另4种经典算法进行分类比较实验,结果表明该文算法在时间开销和分类性能上均有一定的优越性。 The processing of generating dictionary of function in Kernel Matching Pursuit (KMP) often uses greedy Mgorithm for global optimal searching, the dictionary learning time of KMP is too long. To overcome the above drawbacks, a novel classification algorithm (AP-KMP) based on Affinity Propagation (AP) and KMP is proposed. This method utilizes clustering algorithms to optimize dictionary division process in KMP algorithm, then the KMP algorithm is used to search in these local dictionary space, thus reducing the computation time. Finally, four algorithms and AP-KMP are carried out respectively for some UCI datasets and remote sensing image datasets, the conclusion of which fully demonstrates that the AP-KMP algorithm is superior over another four algorithms in computation time and classification performance.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第12期2923-2928,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(11078001) 国家863计划项目(2012AA121602)资助课题
关键词 目标识别:近邻传播 核匹配追踪 分类 Target recognition Affinity Propagation (AP) Kernel Matching Pursuit (KMP) Classification
  • 相关文献

参考文献18

二级参考文献106

共引文献224

同被引文献87

  • 1王开军,张军英,李丹,张新娜,郭涛.自适应仿射传播聚类[J].自动化学报,2007,33(12):1242-1246. 被引量:144
  • 2Frey B J, Dueck D. Clustering by passing messages between data points. Science, 2007, 315(5814): 972-976.
  • 3Borile C, Labarre M, Franz S, Sola C, Refr@gier G. Using affinity propagation for identifying subspecies among clonal organisms: lessons from M. tuberculosis. BMC Bioinformat- ics, 2011, 12:224.
  • 4Bijral A S, Ratliff N, Srebro N. Semi-supervised learning with density based distances. [Online], available: http:// ttic.uchicago.edu / nati / Publications / SemiSupDBD.pdf, October 10, 2014.
  • 5Wagstaff K, Caxdie C. Clustering with instance-level con- straints. In: Proceedings of the 17th International Confer- ence on Machine Learning (ICML2000). Stanford: Morgan Kaufmann Publishers 2000. 1103-1110.
  • 6Givoni I E, Frey B J. Semi-supervised affinity propaga- tion with instance-level constraints. In: Proceedings of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS). Clearwater Beach, Florida, USA: JMLR WCPS, 2009. 161-168.
  • 7Wagstaff K, Cadrie C, Rogers S, Schroedl S. Constrained K-means clustering with background knowledge. In: Pro- ceedings of the 18th International Conference on Machine Learning (ICML2001). Williamstown: Morgan Kaufmann Publishers, 2001. 577-584.
  • 8Kschischang F R, Frey B J, Loeliger H A. Factor graphs and the sum-product algorithm. IEEE Transactions on Informa- tion Theory, 2001, 47(2): 498-519.
  • 9Weiss Y, Freeman W T. On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs. IEEE Transactions on Information Theory, 2001, 47(2): 736--744.
  • 10Givoni I E, Frey B J. A binary variable model for affinity propagation. Neural Computation, 2009, 21(6): 1589-1600.

引证文献8

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部