期刊文献+

三维坐标转换的通用整体最小二乘算法 被引量:52

A General Total Least Squares Algorithm for Three-dimensional Coordinate Transformations
原文传递
导出
摘要 三维坐标转换模型属于非线性EIV(errors-in-variables)模型,现有整体最小二乘算法均设定了某些特殊的假设条件,如仅适用于小角度或者属于非统计意义上的数值解,并且不能用于结构性的系数矩阵等,算法适用性受到极大限制。本文提出三维坐标转换模型的通用加权整体最小二乘算法,该算法适用于任意旋转角度以及一般性权矩阵的三维坐标转换,并且将结构性系数矩阵,同时包含随机和非随机元素的系数矩阵等情况纳入统一的算法。实例计算表明,本文提出的算法具有通用性,适用于实际应用中的各类三维坐标转换模型。 The model of three‐dimensional coordinate transformation is a nonlinear errors‐in‐variables model .The methods proposed in published literatures are always restricted in practice for their speci al assumptions ,such as size of rotation angles ,structured design matrix and special weight matrix .A general weighted TLS algorithm of a three‐dimensional coordinate transformation is investigated in this paper .The new algorithm can be applied in transformations with an arbitrary rotation angles and any applicable weights of the observations ,as well as the structured design matrix or the design matrix with both random and fixed elements .The example given in this paper illustrates that this algorithmis general and suits to all kinds of three‐dimensional coordinate transformations in practice .
出处 《测绘学报》 EI CSCD 北大核心 2014年第11期1139-1143,共5页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金(41474006 41404005 41231174 41174012) 中央高校基本科研基金(2042014kf053)
关键词 整体最小二乘估计 三维坐标转换 变量含误差模型 非线性算法 total least-squares method three-dimensional coordinate transformations errors-in-variables model nonlinear program
  • 相关文献

参考文献23

  • 1FANG Xing. Weighted Total Least Squares Solution for Application in Geodesy[D]. Hanover: Leibniz Universityo: Hanover, 2011.
  • 2HUFFEL S V, VANDEWALLE J.The Total LeasVsquares Problem: Computational Aspects and Analysis [M] Philadelphia: Society for Industrial and Applied Mathe- matics, 1991.
  • 3FANG Xing. A Structured and Constrained Total Least- squares Solution with Cross-covariances [J]. Studia Geophysica et Geodaetiea, 2014, 58 (l): 116.
  • 4BLEICH P, ILLNER M. Strenge L0sung der R/iumlichen Koordinatentransformation Durch Iiterative Berechnung[J]. Allgemdne Vermessungs Nachrichten, 1989,96 (4) : 13a 144.
  • 5POPE A. Some Pitfalls to be Avoided in the Iterative Adjustment of Nonlinear Problems[C] // Proceedings of the 38th Annual Meeting of American Society Photogrammetry. Washington DC: [s.n.], 1972: 449-473.
  • 6ACAR A, OYLUDEMIR MT, AKYILMAZ O, et al. Deformation Analysis with Total Least Squares [ J ]. Natural Hazards and Earth System Sciences, 2006, 6: 663-669.
  • 7FELUS F, BURTCH R. On Symmetrical Three dimen- sional Datum Conversion[J]. GPS Solutions, 2009, 13 (1) :65- 74.
  • 8AKYILMAZ O. Solution of the Heteroscedastic Datum Transformation Problem [R] . Munich: International Association of Geodesy, 2012.
  • 9LU Jue, CHEN Yi, FANG Xing, et al. Performing 3 D Similarity Transformation Using the Weighted Total Least-squares Method [R] Munich: International Association of Geodesy, 2012.
  • 10NEITZEL F. Generalization of Total Least-squares on Example of Unweighted and Weighted 2D Similarity Transformation[J]. Journal of Geodesy, 2010, 84(12) ,751 -762.

二级参考文献44

共引文献215

同被引文献312

引证文献52

二级引证文献180

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部