期刊文献+

数据挖掘在模具行业订单流失分析中的应用

The application of data mining in order churn analysis of mold industry
下载PDF
导出
摘要 针对模具行业客户数量相对较少但订单较多、模具制造是一个以经验和知识为基础的创作性过程的特点,在用决策树算法建立模具行业订单流失预测模型的同时,提出一种将专家的领域知识整合到流失预测模型的方法,并将其应用于某模具企业的订单流失分析中。通过实际模具企业的订单数据集测试,和与传统的决策树建模方法进行比较发现,该方法能有效地解决模具行业订单流失分析问题。 The number of customers in the mold industry are limit ,but the orders are adequate ,and mold manufacturing is a crea-tive process based on experience and knowledge .Thus,it is difficult to do the churn analysis .The orders churn prediction method of mold industry integrating expert domain knowledge was proposed by using the decision tree algorithm .Then,the proposed meth-od was applied to a mold enterprise .By comparing with the model build by traditional decision tree ,results showed that the pro-posed method was suitable for solving the problem of order churn analysis in mold industry .
出处 《现代制造工程》 CSCD 北大核心 2014年第12期10-15,共6页 Modern Manufacturing Engineering
基金 国家自然科学基金资助项目(51175094) 国家科技支撑计划项目(2012BAF12B10)
关键词 模具行业 订单流失 数据挖掘 领域知识 mold industry order churn data mining domain knowledge
  • 相关文献

参考文献10

  • 1鲍明飞.模具企业转型发展的挑战和机遇[J].模具工业,2012,38(10):1-4. 被引量:9
  • 2Dybowski R, Laskey K B, Myers J W, et al. Introduction to the special issue on the fusion of domain knowledge with da- ta for decision support[ J]. Journal of Machine Learning Re- search, 2003 (47) : 293 - 294.
  • 3Wouter Verbeke, David Martens, Christophe Mues, et al. Building comprehensible customer chum prediction models with advanced rule induction techniques [ J ]. Expert Systems with Applications ,2011 (38) :2354 - 2364.
  • 4JiaweiHan,MichelineKamber.数据挖掘:概念与技术[M].范明,孟小峰,等译.北京:机械工业出版社,2001.
  • 5张旭梅,石瀚凌.基于分类挖掘方法的商业银行个人理财业务客户流失分析[J].工业工程,2011,14(6):126-132. 被引量:7
  • 6Anand S, Bell D A, Hughes J G. The role of domain knowl- edge in data mining. Proceedings fourth inter conf Inf knowl Mngt Baltimore[ C ]. [ S. 1. ] : [ s. n. ], 1995:37 - 43.
  • 7Van Gestel T, Martens D, Baesens B, et al. Forecasting and analyzing insurance companies ' ratings [ J ]. International Journal of Forecasting, 2007,23 ( 3 ) : 513 - 529.
  • 8Vanthienen J, Dries E. Illustration of a decision table tool for specifying andimplementing knowledge based systems [ J ]. International Journal on Artificial Intelligence Tools, 1994,3 (2) :267 -288.
  • 9Ahendorf E, Restificar E, Dietterich T. Learning from sparse data by exploiting monotonicity constraints. Proceedings 21st conference on Uncertainty in Artif Int, Edinburgh, Scotland [C]. [S. 1. ]:[s. n. ] ,2005:18 -26.
  • 10Martens D, De Backer M, Haesen R, et al. Ant-Based ap- proach to the knowledge fusion problem [ J ]. Lecture Notes in Computer Science,2006(4150) :84 -95.

二级参考文献17

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部