期刊文献+

基于多模型融合的木材表面缺陷图像快速识别 被引量:5

Fast Recognition for Wood Surface Defect Image Based on the Multi-model Fusion
下载PDF
导出
摘要 根据木材缺陷图像识别技术的现状,针对适合识别木材各种表面缺陷图像的算法,对现有典型模型法进行图像识别方法的分析,提出了一种基于多个模型融合的木材表面缺陷图像快速识别算法。首先,在C-V模型中引入加权总变分能量(VTg(u)),使得二者分别能够与GAC模型连接,实现了在同一全局最小化框架下统一2种模型;然后采用全变分范数对偶化方法对模型进行了快速求解;最后给出了模型的数值化实现算法。结果表明:该算法不依赖初始轮廓线的选择,能够比较快速、准确地识别出木材的节子、孔洞、腐朽、空心等缺陷和单板多节子缺陷图像。 With the algorithms for all kinds of wood surface defect images , we analyzed image recognition method of the existing typical models, and put forward a fast recognition algorithm for wood defect images based on the multi -model fusion.First, the weighted total variation energy VTg(u) was introduced in ROF model and C-V model, so that two models could, re-spectively, connect with GAC model.Therefore, we achieved the unity of the three models in the same global minimization framework.And then, we used a dual formulation of TV norm to realize the fast minimization process .Finally, we provided the numerical algorithm of the model .Our algorithm does not depend on the choice of the initial contour , and it can quickly identify the outline of a variety of wood surface defects including the knots , holes, rot,hollow and veneer defect images with multiple knots .
机构地区 东北林业大学
出处 《东北林业大学学报》 CAS CSCD 北大核心 2014年第12期114-118,140,共6页 Journal of Northeast Forestry University
基金 哈尔滨市优秀学科带头人基金资助项目(2014RFXXJ040)
关键词 木材缺陷 图像识别 全局最小化 全变分范数对偶化 Wood defects Image recognition Global minimization Dual formulation of TV-norm
  • 相关文献

参考文献13

  • 1邹丽晖,白雪冰.图像分割技术在木材表面缺陷识别中的应用[J].森林工程,2007,23(1):27-29. 被引量:14
  • 2Packianather M S, Drake P R. Neural networks for classifying ima-ges of wood venner ( Part 2) [ J]. The International Journal of Ad- vanced Manufacturing Technology, 2000,16 ( 6 ) :424-433.
  • 3Conners R W, Mcmillin C W, Lin K, et al. Identifying an locat- ing surface defects in wood : Part of an automated lumber pro- cessing system[J]. IEEE Trans on PAMI, 1983,5(6) :573-583.
  • 4Lampinen J, Smolander S. Self-organizing feature extraction in rec- ognition of wood surface defects and color images[ J ]. lnterna-tion- al Journal of Pattern Recognition and Artificial Intelligence, 1996, 10(2) ,97-113.
  • 5王克奇,白雪冰.木材表面缺陷的模式识别方法[M].北京:科学出版社,2011,117-131.
  • 6Chan T F, Vese L A. Active contours without Edges [ J ]. IEEE Trans Image Processing,2001,10 (2) : 266- 277,.
  • 7Caselles V, Kimmel R, Sapiro G. Geodesic active contou [ J]. International Journal of Computer Vision, 1997,22( 1 ) :61-79.
  • 8Kichenassamy S, Kumar A, Olver P, et al. Conformal curvature flows: from phase transitions to active vision[ J]. Archive for Ra- tional Mechanics and Analysis, I996,13 (4) :275-301.
  • 9Xavier Bresson, Selim Esedoglu, Pierre Vandergheynst, et al. Fast global minimization of the active contour/snake model [ J ]. Journal. of Mathematical Imaging and Vision, 2007,28 ( 2 ) : 151 - 167.
  • 10Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[ J]. Physica D, 1992,60 (1/4) : 259- 268.

二级参考文献16

共引文献40

同被引文献41

  • 1项宇杰,陈月芬,卢卫国,潘佳浩.基于深度卷积神经网络的木材表面缺陷检测系统设计[J].系统仿真技术,2019,15(4):253-257. 被引量:6
  • 2VASENDINA E,PLOTNIKOVA 1, REDKO L,et al. Study of types of defects in wood chipboard production [ C ]. lOP Cotfferenee series: Materials Science and Engineering, 2015,81 ( 1 ) :012070.
  • 3SKLARCZYK C,PORSCH F, WOLTER B,et al. Nonde- structive characterization of and defect detection in timber and wood [ J 1. Advanced Materials Research,2013,778 : 295 -302.
  • 4LIN W SH, WU J ZH. Nondestructive testing of wood defects based on stress wave technology [ J ]. TELKOMN1- KA: Indonesian Journal of Electrical Engineering,2013,11 ( 11 ) :6802-6807.
  • 5SKLARCZYK C,PORSCH F, WOLTER B,et al. Nonde- structive characterization of and defect detection in timber and wood[ J]. Advanced Materials Research,2013,778 : 295 -302.
  • 6YU L,QI D W. Applying muhifractal spectrum combined with fractal discrete Brownian motion model to wood defcts recognition [ J]. Wood Science and Technology', 2011,45(3) :511-519.
  • 7MU H B, QI D W,ZHANG M M. Image segmentation of wood with knot defects based on gray transformation[ J] Applied Mechanics and Materials,2011,71:1691-1694.
  • 8SHNHNORBANUN S, HUDA S, HASLINA A, et al. A computational biological network for wood defect classification [ J ]. Lecture Notes in Engineering and Computer Science ,2010 (1) :1-5.
  • 9XIE Y H, WANG J C. Study on the identification of the wood surface defects based on texture features [ J ]. Optic- International Journal for Light and Electron Optics,2015, 126(19) :2231-2235.
  • 10GU I Y H, ANDERESSON H, VICEN R. Wood defect classification based on image analysis and support vector machines[J]. Wood Science and Technology,2010,44(4) : 693-704.

引证文献5

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部