期刊文献+

文化蛙跳算法性能分析研究

Performance Analysis Research on Cultural and Shuffled Frog Leaping Algorithm
下载PDF
导出
摘要 基本混合蛙跳算法收敛速度较慢,优化精度较低。为进一步提高混合蛙跳算法的优化速度和精度,将文化算法模型引入到混合蛙跳算法中,提出了一种文化蛙跳算法。利用混合蛙跳算法良好的全局协同搜索能力和文化算法模型中的遗传操作,提高了算法的收敛精度,增强了算法的群体多样性。通过对3个测试函数进行优化实验,并与文中文化蛙跳算法和相关文献中的改进算法进行比较,实验结果表明文中提出的改进文化蛙跳算法具有更好的优化性能。 The Shuffled Frog Leaping Algorithm ( SFLA) has slow convergence speed and low optimization precision. In order to further improve the optimization speed and precision of the SFLA,the improved Cultural And Shuffled Frog Leaping Algorithm ( CA-SFLA) is proposed,through introducing the cultural algorithm model into shuffled frog leaping algorithm. The new convergence precision is im-proved and the population diversity is enhanced,by using the outstanding global cooperative search ability of the shuffled frog leaping al-gorithm and the genetic operation of culture algorithm model. Through testing three benchmark functions,and compared with basic CA-SFLA and the improved CA-SFLA in related references,the results show that CA-SFLA proposed has better performance.
出处 《计算机技术与发展》 2014年第11期87-90,共4页 Computer Technology and Development
基金 国家自然科学基金(6063028) 甘肃省自然科学基金(096RJZA004) 甘肃省科技支撑计划(1011NKCA058) 甘肃农业大学盛彤科技创新基金(GAU-CX1119)
关键词 文化蛙跳算法 遗传操作 多样性 优化性能 CA-SFLA genetic operation diversity optimization performance
  • 相关文献

参考文献11

  • 1齐仲纪,刘漫丹.文化算法研究[J].计算机技术与发展,2008,18(5):126-130. 被引量:19
  • 2兰成章,高洪元,李诗桓.基于差分文化算法的FIR数字滤波器设计[J].自动化技术与应用,2010,29(6):65-68. 被引量:8
  • 3ChentoufiA J, E1 Imrani A A, Bouroumi A. A muhipopulation cultural algorithm using fuzz3, clustering [ J ]. Applied Soft Computing,2007,7(2) :506-519.
  • 4Vitale K, Reynoldsa R, O' Sheab J, et al. Exploring ancient landscapes under lake Huron using cultural algorithms [ J ]. Procedia Computer Science ,2011,6 : 303-310.
  • 5Eusuff M M, Lansey K E. Optimization of waterdistribution network design using the shuffled frog leaping algorithm [ J ]. Journal of Water Resources Planning and Management,2003, 129(3) :210-225.
  • 6赵鹏军,刘三阳.求解复杂函数优化问题的混合蛙跳算法[J].计算机应用研究,2009,26(7):2435-2437. 被引量:71
  • 7代永强,王联国.带记忆功能的混合蛙跳算法[J].计算机工程与设计,2011,32(9):3170-3173. 被引量:15
  • 8王奕首,艾景波,史彦军,滕弘飞.文化粒子群优化算法[J].大连理工大学学报,2007,47(4):539-544. 被引量:17
  • 9Passino K M. Biomimicry of bacterial foraging for distributed optimization and control [ J ]. IEEE Control Systems, 2002,22 (3) :52-67.
  • 10Mehrabian A R, Lucas C. A novel numerical optimization algo- rithm inspired from weed colonization [ J ]. Ecological Infor- matics, 2006,1 (4) : 355 - 366.

二级参考文献81

  • 1李辉,张安,赵敏,徐琦.粒子群优化算法在FIR数字滤波器设计中的应用[J].电子学报,2005,33(7):1338-1341. 被引量:37
  • 2刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 3康立山 谢云 尤矢勇 罗祖华.非数值并行算法[M].北京:科学出版社,1994..
  • 4ELBELTAGI E, HEGAZY T, GRIERSON D. Comparison among five evolutionary-based optimization algorithms [ J ]. Advanced Engineering Informatics, 2005,19(1 ):43-53.
  • 5EUSUFF M M, LANSEY K E. Optimization of water distribution network design using shuffled frog leaping algorithm [ J ]. Journal of Water Resources Planning and Management, 2003,129 ( 3 ) : 210-225.
  • 6LIONG S Y, ATIQUZZAMAN M. Optimal design of water distribution network using shuffled complex evolution [ J ]. The Institution of Engineers, 2004,44( 1 ) :93-107.
  • 7EUSUFF M M. Water resources decision making using meta-heuristic optimization methods[ D ]. Tucson: University of Arizona, 2004.
  • 8ELBEHAIRY H, ELBELTAGI E, HEGAZY T, et al. Comparison of two evolutionary algorithms for optimization of bridge deck repairs [J ]. Computer-Aided Civil and Infrastructure Engineering, 2006,21 (8) :561-572.
  • 9WOLPERT D H, MACREADY W G. No free lunch theorems for optimization[J]. IEEE Trans on Evolutionary Computation, 1997,1 ( 1 ) :67-82.
  • 10BIRBIL S I, FANG S C. An electromagnetism-like mechanism for global optimization[ J]. Journal of Global Optimization, 2003,25 (3) :263-282.

共引文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部