期刊文献+

一种基于偏微分方程变分去噪模型 被引量:2

An Denoising Model of Variation Based on PDE
下载PDF
导出
摘要 近年来,国内外学者对于泊松噪声的研究越来越多,在TV模型的基础上提出了不少二阶去噪模型,它们在有效去除噪声的同时,很好地保护了图像边缘细节,但是共同的缺点是产生了"块效应"。针对这一不足,文中提出了一种四阶去噪模型,运用变分原理得到了其相应的欧拉拉格朗日方程,并用梯度下降法求解拉格朗日方程。文中运用差分法对该模型进行了数值求解与仿真,实验结果表明,提出的方法不仅去噪效果良好,而且有效改善了二阶去噪模型中出现的"块效应",同时有效保护了边缘细节。 In recent years,there are more and more studies on Poisson noise by domestic and foreign scholars,they have proposed several second-order derivative denoising models based on TV model,which are able to remove the noise effectively,and at the same time,pro-tect the image edge detail well,but have a common drawback called"block effect". In response to this deficiency,propose a fourth-order denoising model in this paper,and use the variational principle to get its corresponding Euler Lagrange equation and apply the gradient de-scent method to solve the equation. In this paper,use the differentiated method for numerical solution of the model and simulation,the re-sults show that the proposed method not only removes the noise effectively,but also improve the block effect while protecting the edge detail.
作者 张哲 张化朋
出处 《计算机技术与发展》 2014年第11期103-106,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(11301281)
关键词 变分方法 偏微分方程 图像去噪 泊松噪声 四阶模型 块效应 variation approach PDE image denoising Poisson noise fourth-order model block effect
  • 相关文献

参考文献16

  • 1Tang Chen, Han Lin, Ren Hongwei, et al. Second- order ori- ented partial-differential equations for denoising in elelec- tronic-speckle-pattem interferometry fringes [ J J. Optics Let- ters,2008,33(19) :2197-2181.
  • 2Jin Zhengmeng, Yang Xiaoping. Analysis of a new variation- al model for multiplicative noise removal [ J ]. Journal of Mathematical Analysis and Applications, 2010,362 ( 2 ) :415- 426.
  • 3Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms [ J ]. Physica D, 1992,60:259-268.
  • 4Rudin L I, Lions P L, Osber S. Multiplicative denoising and deblurring:theory and algorithms [ M]//Geometric level set methods in imaging, vision, and graphics. [ s. 1. ] : [ s. n. ], 2003 : 103-119.
  • 5Aubert G, Aujol J F. A variational approach to removing multiplicative noise [ J ]. SIAM Journal on Applied Mathe- matics,2008,68 (4) :925-946.
  • 6Huang Y M, Ng M K, Wen Y W. A new total variation method for multiplicative noise removal [ J ]. SIAM Journal on Imaging Sciences ,2009,2 ( 1 ) :20-40.
  • 7Le T, Chartrand R, Asaki T J. A variational approach to re- constructing images corrupted by Poisson noise [ J ]. Journal of Mathematical Imaging and Vision, 2007,27 ( 3 ) : 257 - 263.
  • 8Dong Gang, Guo Zhichang, Wu Boying. A convex adaptive total variation model based on the gray level indicator formultiplicative noise removal[ J]. Abstract and Applied Anal- ysis ,2013,2013:912373.
  • 9Landi G, Piccolomini E L. An efficient method for nonnega- tively constrained total variation-based denoising of medical images corrupted by Poisson noise [ J ]. Computerized Medi- cal Imaging and Graphics,2012,36( 1 ) :38-46.
  • 10Huang Y M,Ng M K,Wen Y W. A fast total variation mini- mization method for image restoration[ J]. Multiscale Model- ing & Simulation ,2008,7 ( 2 ) :774-795.

同被引文献15

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部