期刊文献+

采用支持向量回归抑制噪声的经验模态分解方法

Empirical Mode Decomposition Method Using Support Vector Regression to Suppress Noise
下载PDF
导出
摘要 在实际信号分解中,经验模态分解(EMD)是对噪声敏感的,往往会分离出一些虚假的本征模函数,对信号的分析产生一定影响。为了提高EMD分解的正确率,减少其出现虚假本征模函数的情况,文中提出了一种基于支持向量回归(SVR)的去噪方法。先对一次EMD分解结果进行SVR逐层滤波并且对信号进行重组,然后利用EMD方法对重组信号进行二次分解。实验表明,二次分解结果已经非常接近于理想的分解结果,不会出现虚假IMF。这种分解方法对噪声不敏感,能有效提高EMD方法对噪声的容忍度。 Empirical Mode Decomposition ( EMD) is sensitive to noise in actual signal decomposition. False intrinsic mode functions tend to exist in decomposition results,leading to negative effects to signal analysis. To improve the accuracy of EMD and reduce the condition of existing the false intrinsic mode function,in this paper,a new de-noising method based on Support Vector Regression ( SVR) . Firstly, decompose the signal with EMD,filtering every IMF by SVR and recombining the regression results. Then decompose the recombined signal with EMD once more time. Experimental results show that the secondary decomposition result is very close to ideal situation and no false IMF is appeared in it. This method is not sensitive to noise,which can effectively improve the tolerance of EMD to noise.
作者 宋剑 邱晓晖
出处 《计算机技术与发展》 2014年第11期122-126,共5页 Computer Technology and Development
基金 江苏省自然科学基金(BK2011789) 东南大学毫米波国家重点实验室开放课题(K201318)
关键词 信号处理 经验模态分解 支持向量回归 噪声抑制 signal processing EMD support vector regression noise suppression
  • 相关文献

参考文献14

  • 1Huang N E, Shen Z, Long S R, et al. The empirical mode de- composition and the Hilbert spectrum for nonlinear and non- stationary time series analysis [ J ]. Proceedings of the Royal Society of London, 1998,454 ( 1971 ) :903-995.
  • 2Rilling G, Flandrin P, Gonqalv6s P. On empirical mode decom- position and its algorithms [ C ]//Proc of IEEE - EURASIP workshop on nonlinear signal and image processing. [ s. 1. ] :[ s. n. ,2003.
  • 3胥保春,袁慎芳.IMF筛选停止条件的分析及新的停止条件[J].振动.测试与诊断,2011,31(3):348-353. 被引量:13
  • 4Huang C, Guo J, Yu X, et al. The study of interferogram de- noising method based on empirical mode decomposition [ J ]. International Journal of Computer Science Issues, 2013, 10 ( 1 ) :750-756.
  • 5张战成,王士同,邓赵红,Chung Fu-lai.支持向量机的一种快速分类算法[J].电子与信息学报,2011,33(9):2181-2186. 被引量:15
  • 6Cortes C, Vapnik V. Support-vector networks [ J ]. Machine Learning, 1995,20 ( 3 ) :273 -297.
  • 7Burges C J C. A tutorial on support vector machines for pattern recognition[ J]. Data Mining and Knowledge Discovery, 1998, 2(2) :121-167.
  • 8田江,顾宏.孤立点一类支持向量机算法研究[J].电子与信息学报,2010,32(6):1284-1288. 被引量:13
  • 9Smola A J ,Schrlkopf B. A tutorial on support vector regression [ J ]. Statistics and Computing ,2004,14 ( 3 ) : 199-222.
  • 10Pontil M, Rifkin R, Evgeniou T. From regression to classifica- tion in support vector machines[ R]. Cambridge:MIT Artificial Intelligence Lab, 1998.

二级参考文献45

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部