期刊文献+

稀疏子空间聚类的惩罚参数自调整交替方向法 被引量:1

Alternating Direction Method of Self-adjusting Penalty Parameters of Sparse Subspace Clustering
下载PDF
导出
摘要 稀疏子空间聚类是利用子空间并集中数据向量的稀疏表示,从而将数据划分到各自子空间,该类方法关键是求出最优稀疏解。文中采用交替方向法求稀疏解,交替方向法把复杂问题分解成简单的、有效求解的子问题,达到最优速度。在交替方向法求解过程中,通常惩罚因子是恒定不变的。文中提出一种惩罚因子参数自调整策略,根据每次迭代信息,调整惩罚因子参数。基于运动分割数据和Hopkins数据库实验,结果表明在迭代次数和运算时间上,稀疏子空间聚类的交替方向法及其惩罚参数自调整策略比传统算法有很大提高,而且对噪声数据也非常有效。 Sparse subspace clustering uses the sparse representation of vectors lying on a union of subspace to cluster the data into separate subspaces. The key of this algorithm is to find the optimal sparse solution. Alternating Direction Method ( ADM) is applied to solve sparse problem in this paper. ADM divides the complex problem into simple and effectively solving sub-problem to achieve optimal speed. In the process of the ADM solving,the penalty factor is constant. In this paper,a penalty factor self-adjusting strategy is proposed, according to the each iterative information,adjust the penalty factor parameters. The experiment based on motion division data and Hop-kins database shows that the proposed method has great improvement in iteration times and computing time compared with traditional al-gorithms,is also valid for noisy data.
作者 姚刚 杨敏
出处 《计算机技术与发展》 2014年第11期131-134,共4页 Computer Technology and Development
基金 江苏省自然科学基金(BK2011758) 南京邮电大学攀登计划(NY212066)
关键词 子空间聚类 稀疏表示 L1范数正则化 交替方向法 subspace clustering sparse representation L1 norm regularization alternating direction method
  • 相关文献

参考文献15

  • 1Vidal R. Subspace clustering[ J ]. IEEE Signal Processing Ma- gazine ,2011,28 ( 2 ) :52-68.
  • 2yon Luxburg U. A tutorial on spectral clustering[ J]. Statistics and Computing, 2007,17 (4) : 395-416.
  • 3Elharnifar E, Vidal R. Sparse subspaee clustering [ C ]//Proc of IEEE conference on computer vision and pattern recogni- tion. [ s. 1. ] : IEEE ,2009:2790-2797.
  • 4Liu Guangcan, Lin Zhouchen, Yong Yu. Robust subspace seg- mentation by low-rank representation[ C ]//Proc of 27th in- ternational conference on machine learning. Haifa: National Science Foundation ,2010:663-670.
  • 5文再文,印卧涛,刘歆,张寅.压缩感知和稀疏优化简介[J].运筹学学报,2012,16(3):49-64. 被引量:22
  • 6Tropp J A, Wright S J. Computational methods for sparse solu- tion of linear inverse problems [ J ]. Proceedings of the IEEE, 2010,98(6) :948-958.
  • 7Yang Junfeng, Zhang Yin. Alternating direction algorithms for L1-problems in compressive sensing [ J ]. IEEE Signal Pro- cessing Letters ,2012,20( 1 ) :63-66.
  • 8Yuan Xiaoming. Alternating direction method for covariance selection models [ J ]. Journal of Scientiiic Computing, 2012,51 (2) :261-273.
  • 9Elhamifar E, Vidal R. Sparse subspace clustering : algorithm, theory,and applications[ J]. IEEE Transactions on Pattem A- nalysis and Machine Intelligence ,2013,35 ( 11 ) :2765-2781.
  • 10Tron R, Vidal R. A benchmark for the comparison of 3-D mo- tion segmentation algorithms[ C]//Proc of conference on com- puter vision and pattern recognition. [ s. 1. ] :IEEE ,2007.

二级参考文献64

  • 1陈阳,周明全,耿国华.基于卡尔曼滤波的交通参数采集系统[J].微机发展,2004,14(12):7-9. 被引量:2
  • 2姚红革,耿军雪.基于卡尔曼预测的视频目标实时跟踪[J].西安工业大学学报,2007,27(2):171-175. 被引量:13
  • 3Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non - Gaussian Bayesian tracking[J]. IEEE transactions on signal processing, 2002, 50(2) : 174 - 188.
  • 4Moscheni F. Spatio-temporal segmentation and object tracking: An application to second generation video coding[D]. Lausanne: Swiss Federal Institute of Technology, 1997.
  • 5Taubin G, Cooper D B. Object recognition based on moment (or algebraic) invariants[ M]. [ s. l. ] : MIT Press, 1992 : 375 - 397.
  • 6LI Pei - hua, Zhang Tian- wen, MA Bo. Unscented Kalman Filter for Visual Cure Tracking[ J ]. Image and Vision Computing,2004,22 (2) : 157 - 160.
  • 7Torr PHS, Zisserman A. Concerning bayesian motion segmentation,model averaging, matching and the trifocal tensor[ A]. European Conference on Computer Vision[ C]. Germany: Freiburg, 1998. 511 - 527.
  • 8Costeira J , Kanade T . A multibody factorization method for independently moving objects[ J]. IJCV, 1998, 29(3) : 159 - 179.
  • 9Inoue K, Urahama K. Separation of multiple objects in motion images by clustering[ A]. Proceedings of 8th International Conference on Computer Vision[ C]. Vancouver, Canada, 2001(1). 219 - 224.
  • 10Meila M, Shi J. A random walks view of spectral segmentation[ A].Proceedings of International Workshop on AI and Statistics[ C].Florida, USA, 2001.

共引文献23

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部