期刊文献+

量化压缩感知在语音压缩编码中的应用 被引量:1

Application of Quantized Compressed Sensing in Speech Compression Encoding
下载PDF
导出
摘要 利用语音信号在离散余弦变换(DCT)域的近似稀疏性和量化压缩感知理论,文中提出一种基于量化压缩感知的语音压缩编码方案。编码端利用压缩感知技术,将语音信号投影成数据量大大减少的观测序列,然后对观测序列采用Lloyd-M ax量化得到量化后的观测样值;解码端直接利用量化后的观测样值,结合重构算法重构出原始语音信号的DCT系数,经过DCT反变换得到重构后的语音信号,并采用后置低通滤波器改善重构语音的听觉效果。该编码方案解码端不需要进行反量化,而是直接利用量化后的观测样值进行重构,有效降低了解码端的运算量及复杂度。仿真结果表明:采用量化迭代硬阈值(QIHT)算法重构效果优于迭代硬阈值算法(IHT),重构语音的信噪比能达到20 d B以上,MOS分达到3.26。 Utilizing the sparsity of Discrete Cosine Transform ( DCT) coefficients of speech signal and the theory of quantized compressed sensing,a novel speech coding scheme based on Quantized Compressed Sensing ( QCS) is proposed in this paper. Based on CS theory, the speech signal is transformed into measurement sequence at encoder side,by which the size of the data set is significantly reduced. Af-ter quantizing the measurement sequence by Lloyd-Max scheme,the sample value of measurement is gained. At decoder side,together with reconstruction algorithm,the DCT coefficients can be reconstructed by the measurements. The speech signal can be reconstructed af-ter DCT inverse transform. The quality of reconstructed speech signal can be improved by post low-pass filter. The speech signal can be directly reconstructed by the quantized measurements without inverse quantization,leading to the reduction of computation and complexity in decoder site. The simulation results show that the performance of Quantized Iterative Hard Thresholding ( QIHT) algorithm is superior to that of Iterative Hard Thresholding ( IHT) algorithm. The Signal-to-Noise Ratio ( SNR) of the reconstructed speech signal is about 20 dB while mean opinion score (MOS) is up to 3. 26.
出处 《计算机技术与发展》 2014年第11期155-158,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(60971129 61271335) 江苏省普通高校研究生科研创新计划(CXZZ13_0488)
关键词 离散余弦变换 量化压缩感知 Lloyd-Max量化 量化迭代硬阈值算法 discrete cosine transform quantized compressed sensing Lloyd-Max quantization quantized iterative hard thresholding
  • 相关文献

参考文献14

  • 1Donoho D L. Compressed sensing [ J ]. IEEE Transactions on Information Theory, 2006,52 (4) : 1289-1306.
  • 2Baraniuk R G. Compressive sensing [ J ]. IEEE Signal Process- ing Magazine, 2007,24 (4) : 118-121.
  • 3Candes E J. Compressive sampling[ C ]//Proceedings of the international congress on mathematicians. Madrid: [ s. n. ], 2006 : 1433-1452.
  • 4焦李成,杨淑媛,刘芳,侯彪.压缩感知回顾与展望[J].电子学报,2011,39(7):1651-1662. 被引量:317
  • 5王韦刚,胡海峰.基于压缩感知的协作频谱检测[J].计算机技术与发展,2012,22(12):241-244. 被引量:3
  • 6张爱华,薄禄裕,盛飞,杨培.基于小波变换的压缩感知在图像加密中的应用[J].计算机技术与发展,2011,21(12):145-147. 被引量:3
  • 7刘洋,季薇,侯晓赟.一种改进的基于OMP重建的宽带频谱感知算法[J].计算机技术与发展,2013,23(1):99-102. 被引量:4
  • 8Chfistensen M G, Stergaard J, Jensen S H. On compressed sensing and its application to speech and audio signals [ C ]// Proc of 2009 conference record of the forty- third Asilomar conference on signals, systems and computers. Pacific Grove: IEEE ,2009:356-360.
  • 9. Griffin A, Hirvonen T, Tzagkarakis C, et al. Single- channel and multi-channel sinusoidal audio coding using compressed sensing[J]. IEEE Transactions on Audio, Speech, and Lan- gnage Processing,2011,19 ( 5 ) : 1382 - 1395.
  • 10Abrol V, Sharma P, Budhiraja S. Evaluating performance of compressed sensing for speech signals[ C ]//Proc of 3rd inter- national conference on advance computing conference. [ s. 1. ] :Is. n. ] ,2013:1159-1164.

二级参考文献145

  • 1乔建华,张井岗,张雪英.基于MATLAB的8kb/s CS-ACELP语音编码算法及实现[J].仪器仪表学报,2002,23(z1):194-195. 被引量:1
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3孔红山,朱良学,章四兵.FS-1016 CELP语音编码的算法仿真[J].合肥工业大学学报(自然科学版),2006,29(10):1227-1230. 被引量:1
  • 4李传目,洪联系,万春.基于混沌序列的图像分块加密方法[J].计算机技术与发展,2007,17(8):51-54. 被引量:7
  • 5DONOHO D.Compressed sensing[J].IEEE Trans.on Information Theory,2006,52(4):1289-1306.
  • 6XU T,WANG W W.A compressed sensing approach for underdetermined blind audio source separation with sparse representation[J].2009-Sept:493-496.
  • 7TROPP J,GILBERT A.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Trans.Inform.Theory,2007,53(12):4655-4666.
  • 8CANDES E,ROMBERG J,TAO T.Stable signal recovery from incomplete and inaccurate measurements[J].Comm.Pure and Appl.Math.,2006,59:1207-1223.
  • 9CHEN S,DONOHO D L,SAUNDERS M A.Atomic decomposition by basis pursuit[J].SIAM J.Sci.Comp,1999,20(1):33-61.
  • 10ANDRECUT M,ESTE R A,KAUFFMAN S A.Competitive optimization of compressed sensing[J].Journal of Physics A:Mathematical and Theoretical,2007,40:299-305.

共引文献344

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部