期刊文献+

多元再生核径向基函数研究 被引量:1

Study of Multivariate Reproducing Kernel Radial Basis Function
下载PDF
导出
摘要 通过研究多元再生核函数插值,发现再生核函数是一个径向基函数,在对再生核函数进行多元插值的时候,可以直接进行径向基插值,而不必像以往一样只能进行张量积展开.径向基插值方法简单,易于计算机实现,计算精度高.通过数值实验,直接进行插值比张量积精度要高,同时在与其他多元函数插值进行比较后,获得了理想的结果. By studying the multivariate reproducing kernel function interpolation, it is found that the reprodu- cing kernel function itself is also a radial basis function. When the multivariate reproducing kernel function is interpolated, direct interpolate can be conducted rather than using its tensor product. This method is simple, easy to implement with high accuracy compared with direct tensor product interpolation by numerical experi- ments to gain more desired results than other multivariate function interpolation.
出处 《大连交通大学学报》 CAS 2015年第1期109-111,117,共4页 Journal of Dalian Jiaotong University
基金 辽宁省教育厅高等学校科学研究计划资助项目(L2012167)
关键词 再生核 径向基 多元插值 reproducing kernel radial basis function multivariate interpolation
  • 相关文献

参考文献4

  • 1CUI MINGGEN,DENG ZHONGXING.On the best operator of interpolation[J].Math.Numerical Sinica,1986,8 (2):207-218.
  • 2崔明根,邓中兴,吴勃英.再生核空间中的数值泛函方法[M].哈尔滨:哈尔滨工业大学出版社,1988.
  • 3吴勃英,张钦礼.计算再生核的卷积方法[J].数学进展,2003,32(5):635-640. 被引量:5
  • 4FRANKE R.Scattered data interplation:tests of some methods[J].Math.Comp.,1982,38:181-200.

二级参考文献6

  • 1崔明根 邓中兴.W12[a,b]空间中的最佳插值逼近算子[J].计算数学,1986,8(2):209-216.
  • 2文松龙,崔明根.W空间中最佳逼近插值算子[J].计算数学,1997,19(2):177-184. 被引量:15
  • 3崔明根 邓中兴.W2^1[a,b]空间中的最佳插值逼近算子.计算数学,1986,8(2):209-216.
  • 4Aronszain N. Theorey of reproducing kernels [J]. Trans Amer Math Soc, 1950, 68: 337-404.
  • 5Rodriguez G & seatzu S. Numerical solution of the finite moment problem in a reproducing kernel Hilbert space [J]. Comp Appl Math, 1990, 33: 233-244.
  • 6Xie Xianggen & Nashed, M Z. Teh Backus-Gilbert methods for signals in reproducing kernel Hilbert spaces and wavelet subspaces [J]. Inverse Problems. 1994, 10: 785-804.

共引文献5

同被引文献19

  • 1REDZUAN A M and LING Shao. Non-distortion-specific no-reference image quality assessment: a survey[J]. Information Sciences, 2015, 301(4): 141-160.
  • 2MOORTHY A K and BOVIK A C. A two-step framework for constructing blind image quality indices[J]. IEEE Signal Processing Letters, 2010, 17(5): 513-516.
  • 3MOORTHY A K and BOVIK A C. Blind image quality assessment: From natural scene statistics to perceptual quality[J]. IEEE Transactions on Image Processing, 2011, 20(12): 3350-3364.
  • 4HE L, TAO D, LI X, et al. Sparse representation for blind image quality assessment[C]. 25th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Rhode Island, 2012: 1146-1153.
  • 5SAAD M A, BOVIK A C, and CHARRIER C. DCT statistics model-based blind image quality assessment[C]. IEEE International Conference on Image Processing, Brussels, Belgium, 2011: 3093-3096.
  • 6MITTAL A, MOORTHY A K, and BOVIK A C. No-reference image quality assessment in the spatial domain [J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695-4708.
  • 7MITTAL A, SOUNDARARAN R, and BOVIK A C. Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209-212.
  • 8VAPNIK V N. An overview of statistical learning theory [J]. IEEE Transactions on Neural Networks, 1999, 10(5): 988-999.
  • 9SHEIKH H R, WANG Z, CORMACKL, et al. LIVE image quality assessment database, Version 2[OL]. http://live.ece. utexas.edu/research/quality,2014.
  • 10LIU Lixiong, LIU Bao, HUANG Hua, et al. No-reference image quality assessment based on spatial and spectral entropies[J]. IEEE Transactions on Signal Processing: Image Communication, 2014, 29(8): 856-863.

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部