期刊文献+

基于Levy过程修正GJR-GARCH模型的权证定价——对中国大陆和香港权证的实证研究 被引量:4

Warrants pricing based on GJR-GARCH model with Levy processes adjusting:An empirical analysis between Mainland and Hongkong
原文传递
导出
摘要 考虑股票收益率在GARCH模型下的非正态特征,以及收益率标准差序列的非对称特征,首先给出几种真实测度下服从Levy分布的条件异方差模型,接着对随机扰动项和波动率进行风险中性调整,最后通过蒙特卡罗模拟进行大陆和香港权证的实证.结果表明:Levy过程修正下的GJR-GARCH模型能够很好地捕捉到金融数据"跳跃特征"、"群聚现象"和"杠杆效应".同时,该模型显著提升了权证的定价精度.市场间对比显示,香港权证的定价精度高于大陆权证,且大陆权证的市场价格显著偏离无套利假设下的理论价值. GARCH models with filtered historical innovations in option pricing gain a large number of important researches, we introduce asymmetric GARCH and non-normal Levy into this model based on "fat tail", skewness and other statistical characteristic of financial data. We build several GARCH models with Levy random numbers under physical measure, and then we transform heteroscedasticity sequence into risk neutral measure. Through the empirical Monte-Carlo pricing method in Mainland warrants market and Hong Kong warrants market, we demonstrate this method can improve pricing precision significant, the "leverage effect" and "clustering effect" of volatility are well reflected, by comparing pricing results between these two warrant markets, we demonstrate Hong Kong warrant market is more effective.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2014年第12期3009-3021,共13页 Systems Engineering-Theory & Practice
基金 国家自然科学基金重大研究计划(91218301) 国家自然科学基金面上项目(71171168) 教育部人文社会科学重点研究基地重大项目(12JJD790026) 国家教育部留学基金(201206980001) 西南财经大学中央高校基本科研业务费专项资金(JBK1407164 JBK12050) 中央高校科研业务费专项资金及四川省教育厅创新团队项目(JBK130401)
关键词 LEVY过程 GJR—GARCH模型 风险中性调整 权证定价 Levy process GJR-GARCH model risk neutral pricing warrant pricing
  • 相关文献

参考文献34

  • 1Xiong W, Yu L. The Chinese warrants bubble[J]. American Economic Review, 2011, 101(6): 2723-2753.
  • 2Black F, Scholes M. The pricing of options and corporate liabilities[J]. The Journal of Political Economy, 1973, 81(3): 637-654.
  • 3Galai D, Schneller M I. Pricing of warrants, the value of the firm[J]. The Journal of Finance, 1978, 33(5): 33-42.
  • 4French K R, Schwert G W, Stambaugh R F. Expected stock returns, volatility[J]. Journal of Financial Economics, 1987, 19(1): 3-29.
  • 5Duan J C. The GARCH option pricing model[J]. Mathematical Finance, 1995, 5(1): 13-32.
  • 6Barone-Adesi G, Engle R F, Mancini L. A GARCH option pricing model with filtered historical simulation[J]. Review of Financial Studies, 2008, 21(3): 1223-1258.
  • 7Madan D B, Seneta E. The variance Gamma (V.G.) model for share market returns[J]. The Journal of Business, 1990, 63(4): 511-524.
  • 8Carr P, Wu L R. The finite moment log stable process, option pricing[J]. Journal of Finance, 2003, 58(2): 753-777.
  • 9Christoffersen P, Elkamhi R, Feunou B, et al. Option valuation with conditional heteroskedasticity, nonnormality[J]. Review of Financial Studies, 2010, 23(5): 2139-2183.
  • 10吴仰哲, 廖四郎, 林士贵. Lévy与GARCH-Lévy过程之选择权评价与实证分析:台湾加权股票指数选择权为例[J]. 管理与系统, 2010, 17(1): 49-74.

二级参考文献134

共引文献58

同被引文献39

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部