期刊文献+

基于强化学习的订单生产型企业的订单接受策略 被引量:9

Reinforcement learning based order acceptance policy in make-to-order enterprises
原文传递
导出
摘要 针对订单生产型企业在订单接受决策过程中的不确定性,基于强化学习的思想,在考虑生产成本、延迟惩罚成本以及拒绝成本的前提下,引入顾客等级这一要素,从收益管理的角度建立了基于半马尔可夫决策过程的订单接受模型.在此基础上,提出了基于SMART算法的最优订单接受策略求解方法,旨在最大化订单生产型企业的长期利润.仿真实验结果表明:基于SMART算法得到的订单接受策略要优于基于先来先服务方法得到的订单接受策略;同时,针对考虑顾客等级的仿真实验及数据分析结果,也验证了引入顾客等级这一要素的必要性和重要性. From the perspective of revenue management, a semi-Markov decision process based order acceptance model (SMDP-OA model) is proposed on the basis of reinforcement learning. This model is to solve the uncertainties during order accepting decision processes for make-to-order (MTO) compa- nies, not only taking into account the production cost, delay cost and reject cost of the incoming order, but also the factor of customer level. Besides, SMART-based optimal order acceptance algorithm is pre- sented, aiming at maximizing the profit of MTO companies. The simulation experiments indicate that the proposed SMART-based algorithm performs better than the algorithm based on the first-come-first-serve (FCFS) order acceptance strategy. Moreover, the experiments also justify the necessity and importance of incorporating the customer level factor during the determination of the optimal order acceptance policy.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2014年第12期3121-3129,共9页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(71201020) 中央高校基本科研业务经费(N120406002) 中国博士后科学基金(2013M540233)
关键词 收益管理 订单接受 SMART算法 平均利润 强化学习 revenue management order acceptance SMART algorithm average profit reinforcementlearning
  • 相关文献

参考文献21

  • 1Scott C, Izak D. Optimal admission control and sequencing in a make-to-stock/make-to-order production system[J]. Operations Research, 2000, 48(5): 709-720.
  • 2Wu A W D, Chiang D M H. The impact of estimation error on the dynamic order admission policy in B2B MTO environment[J]. Expert Systems with Applications, 2009, 36(9): 11782-11791.
  • 3Slotnick S A. Order acceptance and scheduling: A taxonomy and review[J]. European Journal of Operational Research, 2011, 212(1): 1-11.
  • 4Balakrishnan N, Patterson J W, Sridharan V. Rationing capacity between two product classes[J]. Decision Sciences, 1996, 27(2): 185-214.
  • 5Barut M, Sridharan V. Revenue management in order-driven production systems[J]. Decision Sciences, 2005, 36(2): 287-316.
  • 6张欣,马士华.基于有限生产能力和产出缓存的订单接受策略[J].工业工程与管理,2008,13(2):34-38. 被引量:17
  • 7张人千.考虑时间序列关联的订单选择决策比较研究[J].管理科学学报,2009,12(3):44-55. 被引量:13
  • 8Rom W O, Slotnick S A. Order acceptance using genetic algorithms[J]. Computers and Operations Research, 2009, 36(6): 1758-1767.
  • 9Oguz C, Salman F S, Yalcm Z B. Order acceptance and scheduling in make-to-order systems[J]. International Journal of Production Economics, 2010, 125(1): 200-211.
  • 10范丽繁,陈旭.基于EMSR方法的订单接受策略研究[J].管理评论,2010,22(4):109-113. 被引量:6

二级参考文献94

共引文献87

同被引文献52

引证文献9

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部