摘要
DBSCAN算法对输入参数Eps敏感,尤其当数据密度分布不均时,采用全局Eps导致聚类效果差;该算法对高维数据的处理能力也不理想。提出一种改进的DBSCAN算法LF-DBSCAN,结合蚁群聚类算法实现数据集的划分以获取参数Eps的值组,然后根据不同的Eps值分别调用DBSCAN算法,从而实现对非均匀数据集的聚类。实验结果表明,改进后的算法的有效性有所提高。
出处
《池州学院学报》
2014年第6期33-36,共4页
Journal of Chizhou University
基金
池州学院院级科研项目(2011ZR003)