期刊文献+

高热稳定性多孔二氧化钛/石墨烯复合体的制备与光催化性能研究 被引量:8

Study on preparation and photocatalytic performance of high thermally stable porous TiO_2/graphene composites
下载PDF
导出
摘要 以硫酸氧钛为钛源,氧化石墨为碳源,采用水热方法制备了高热稳定性多孔二氧化钛/石墨烯复合体材料。利用XRD、Raman、N2吸附、SEM和TEM对复合体材料的结构进行了表征。研究表明高热稳定性多孔二氧化钛均匀复合在石墨烯表面,两者形成了有效的界面耦合。光催化降解高毒性有机污染物2,4-二氯苯酚,经700℃高温焙烧后的样品具有最高的光催化降解效率,2h即可将有机物完全降解,这得益于多孔二氧化钛发达的孔道结构利于反应物和产物的扩散,较高的结晶度以及与石墨烯之间形成的紧密界面耦合有利于光生电荷的分离。这种新颖的具有优异光催化性能的高热稳定性多孔二氧化钛/石墨烯复合体在光催化领域具有较高的应用价值,这种一步水热法合成策略也为构筑其他石墨烯基多孔复合材料提供了新的思路。 Utilizing titanyl sulfate as Ti source and graphite oxide as carbon source,high thermally stable porous TiO2/graphene composites were successfully prepared via hydrothermal method.The structure was characterized by X-ray diffraction (XRD), Raman,N2 adsorption,scanning electron microscope (SEM)and transmission electron microscopy (TEM).The results show that the surface of graphene is covered uniformly by high thermally stable porous TiO2 and both form effective interface coupling. The sample calcined at 700 ℃ exhibits the best photocatalytic property for photocatalytic degradation high toxic 2,4-dichlorophe-nol.The complete photocatalytic degradation can be achieved within 2 h.The high catalytic performance is due to the porous structure favoring the reactants and products diffusion,and high porous TiO2 crystallinity and efficient interface coupling between porous TiO2 and graphene benificial the photogenerated charge carriers separation.This novel high thermally stable porous TiO2/graphene composite will have potential applications in photocatalysis,and the facile one-step hydrothermal strategy offers new i-deas for fabricating other graphene-based porous composites materials.
出处 《中国科技论文》 CAS 北大核心 2014年第12期1414-1417,共4页 China Sciencepaper
基金 高等学校博士学科点专项科研基金资助项目(20112301110002 20112301120002)
关键词 无机化学 多孔二氧化钛 石墨烯 复合体 光催化 inorganic chemistry porous TiO2 graphene composite photocatalysis
  • 相关文献

参考文献15

  • 1Kim W,ChoiSY,JeonY M,etal.Highlyordered,hierarchicallyporousTiO2filmsviacombinationoftwoself-assemblingtemplates[J].ACSApplied Materials&Interfaces,2014,6(14):11484-11492.
  • 2Zaky A M,Chaplin B P.PoroussubstoichiometricTiO2anodesasreactiveelectrochemicalmembranesforwatertreatment[J].EnvironmentalScience & Tech-nology,2013,47(12):6554-6563.
  • 3GottesmanR,TiroshS,BaradH N,etal.Directima-ging oftherecombination/reduction sitesin porousTiO2electrodes[J].TheJournalofPhysicalChemistryLetters,2013,4(17):2822-2828.
  • 4LiW,WuZ,WangJ,etal.Aperspectiveonmeso-porousTiO2 materials [J].Chemistryof Materials,2014,26(1):287-298.
  • 5JingL,ZhouW,TianG,etal.Surfacetuningforox-ide-basednanomaterialsasefficientphotocatalysts[J].ChemicalSocietyReviews,2013,42(24):9509-9549.
  • 6Zhou W,Fu H.MesoporousTiO2:preparation,do-ping,andasacompositeforphotocatalysis[J].Chem-CatChem,2013,5(4):885-894.
  • 7SunF,ZhouW,TianG,etal.Fabricationofrice-likeporousanataseTiO2 withhighthermalstabilityanden-hancedphotocatalyticperformance[J].ChemCatChem,2012,4(6):844-850.
  • 8JiaoY,ZhengY,JaroniecM,etal.Originoftheelec-trocatalyticoxygenreductionactivityofgraphene-basedcatalysts:aroadmaptoachievethebestperformance[J].JournaloftheAmericanChemicalSociety,2014,136(11):4394-4403.
  • 9ZhangX,WangL,XinJ,etal.Roleofhydrogeningraphenechemicalvapordepositiongrowthonacoppersurface[J].JournaloftheAmericanChemicalSociety,2014,136(8):3040-3047.
  • 10CuiCJ,QianWZ,YuYT,etal.Highlyelectrocon-ductivemesoporousgraphenenanofibersandtheirca-pacitanceperformanceat4V [J].JournaloftheAmeri-canChemicalSociety,2014,136(6):2256-2259.

同被引文献105

  • 1陈先学,卢建树,王丽娜,周颖.醇类燃料电池电催化剂的研究进展[J].电池工业,2004,9(1):41-44. 被引量:6
  • 2关鲁雄,李家元,王婷,李娟,钟文毅.掺杂铜和钒的纳米二氧化钛的光催化性能[J].中南大学学报(自然科学版),2006,37(4):731-736. 被引量:31
  • 3Fujishima A. Electrochemical photolysis of water at a semiconductor electrode [ J ]. Nature, 1972, 238 (5358) . 37-38.
  • 4Fresno F, Portela R, Sudrez S, et al. Photocatalytic materials: recent achievements and near future trends [J]. Journal of Materials Chemistry A, 2014, 2(9): 2863-2884.
  • 5Fan W, Zhang Q, Wang Y. Semiconductor-based nano-composites for photocatalytic H2 production and COz conversion [J]. Physical Chemistry Chemical Physics, 2013, 15(8): 2632-2649.
  • 6Wang Z L. Zinc oxide nanostructures: growth, proper- ties and applications [ J ]. Journal of Physics: Con- densed Matter, 2004, 16(25): R829-R858.
  • 7Li X, Lti K, Deng K, et al. Synthesis and characteriza- tion of ZnO and TiO2 hollow spheres with enhanced photoreactivity [J]. Materials Science and Engineering B, 2009, 158(1/2/3): 40-47.
  • 8Cheng H M, Huang K Y, Lee K M, et al. High-effi- ciency cascade CdS/CdSe quantum dot-sensitized solar cells based on hierarchical tetrapod-like ZnO nanoparti- ctes [J]. Physical Chemistry Chemical Physics, 2012, 14(39) : 13539-13548.
  • 9Katsnelson M I, Novoselov K S, Geim A K. Chiral tunnelling and the klein paradox in graphene [J]. Na ture Physics, 2006, 2(9). 620-625.
  • 10Zhang Y P, Pan C X. TiO2/Graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light [J]. Journal of Materials Sci- ence, 2010, 46(8): 2622-2626.

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部