期刊文献+

基于多重调谐质量阻尼器的苏通大桥抖振位移最优控制的数值模拟(英文) 被引量:1

A simulation study on the optimal control of buffeting displacement for the Sutong Bridge with multiple tuned mass dampers
原文传递
导出
摘要 研究目的:为超大跨度斜拉桥抗风设计与抖振控制提供参考。研究方法:基于ANSYS建立了苏通大桥三维有限元模型,并在MATLAB平台模拟了苏通大桥三维脉动风场。考虑主梁断面气动自激力,进行了苏通大桥抖振时域分析。根据苏通大桥动力特性和抖振时域分析结果,重点分析了多重调谐质量阻尼器(MTMD)用于抖振控制的参数敏感性。考虑MTMD的控制效果、建造费用、施工难度及鲁棒性等因素建立了关于MTMD设计参数的目标函数,并基于一阶优化算法进行目标函数最优解的非线性搜索,据此获得了MTMD在约束条件下的最优设计参数。重要结论:1.苏通大桥侧向抖振位移主要由第一阶侧弯振型控制,竖向抖振位移主要由第一阶竖弯振型控制;2.MTMD的控制效果对设计参数的变化十分敏感,其中质量比和频带宽敏感性更强;3.MTMD的最优设计参数可以通过一阶优化算法获得,并可通过零阶优化算法对优化结果进行验证;4.采用优化后的MTMD设计参数,苏通大桥的抖振响应可以得到明显抑制,且侧向抖振控制效果更加明显。 The buffeting of long-span cable-supported bridges under strong winds is one of the key issues in bridge wind engineering. In order to study the effectiveness of the multiple tuned mass dampers(MTMDs) in buffeting control of long-span bridges, the Sutong Cable-stayed Bridge(SCB) with a main span of 1088 m in China is taken as an example in this paper. The spatial finite element model of the SCB is established and the modal analysis is conducted based on ANSYS. After the 3D turbulence wind field of the SCB is simulated using the measured wind parameters, the time-domain buffeting analysis on the SCB is conducted with the aerodynamic self-excited forces included. According to the dynamic characteristics and the time-domain buffeting analysis results of the SCB, the parameter sensitivity analysis on buffeting vibration control with MTMD is conducted in ANSYS. The optimum parameters are then obtained with the construction difficulty and economic factors considered. Results show that the control efficiency is sensitive to the number of the TMD, mass ratio, frequency band-width ratio, and damping ratio. Both the vertical and the lateral vibrations can be effectively controlled when proper design parameters of a MTMD system are used. In addition, the control effect on lateral vibration is better than that on vertical vibration. Results obtained in this study can provide references for anti-wind design and buffeting control of long-span cable-stayed bridges.
出处 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2014年第10期798-812,共15页 浙江大学学报(英文版)A辑(应用物理与工程)
基金 Project supported by the Major State Basic Research Development Program of China(973 Program)(No.2015CB060000) the National Natural Science Foundation of China(Nos.51378111 and 51438002) the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China(No.142007) the Program for New Century Excellent Talents in University of Ministry of Education of China(No.NCET-13-0128) the Jiangsu Key Laboratory of Environmental Impact and Structural Safety in Engineering,China University of Mining & Technology(No.JSKL2014K03),China
关键词 大跨斜拉桥 抖振响应 振动控制 多重调谐质量阻尼器(MTMD) 控制效果 优化算法 Long-span cable-stayed bridge Buffeting response Vibration control Multiple tuned mass dampers(MTMDs) Control efficiency
  • 相关文献

二级参考文献16

  • 1Brewster, K.A., Zrnic, D.S., 1986. Comparison of eddy dissi- pation rate from spatial spectra of Doppler velocities and Doppler spectrum widths. Journal of Atmospheric and Oceanic Technology, 3(3):440-452. [doi:10.117511520- 0426(1986)003<0440:COEDRF>2.0.CO;2].
  • 2Chan, EW., 2010. LIDAR-based turbulence intensity calcula- tion using glide-path scans of the Doppler light detection and ranging (lidar) systems at the Hong Kong Interna- tional Airport and comparison with flight data and a tur- bulence alerting system. Meteorologische Zeitschrift, 19(6):549-563. [doi: 10.1127/0941-2948/2010/0471].
  • 3Chan, P.W., Shao, A.M., 2007. Depiction of complex airflow near Hong Kong International Airport using a Doppler LIDAR with a two-dimensional wind retrieval technique. Meteorologische Zeitsehrift, 16(5):491-504. Idol: 10.112710941-2948/2007/0220].
  • 4Chan, EW., Zhang, E, 2012. Aviation Applications of Doppler Radars in the Alerting of Windshear and Turbulence. In: Doppler Radar Observations-weather Radar, Wind Pro- filer, Ionospheric Radar, and Other Advanced Applica- tions, Joan Bech (Ed.), InTech, p.470.
  • 5Chan, S.T., Mok, C.W., 2004. Comparison of Doppler LIDAR Observations of Severe Turbulence and Aircraft Data. llth Conference on Aviation, Range, and Aerospace Meteorology, American Meteorological Society, Hyannis, MA, USA.
  • 6Cheung, E, Lam, C.C., Chan, EW., 2008. Estimating Turbu- lence Intensity along Flight Paths in Terrain-disrupted Airflow Using Anemometer and Wind Profiler Data. 13th Conference on Mountain Meteorology, Whistler, BC, Canada.
  • 7Cornman, L.B., Meymaris, G., Limber, M., 2008. An Update on the FAA Aviation Weather Research Program's in situ Turbulence Measurement and Reporting System. 12th Conference on Aviation, Range and Aerospace Meteor- ology, American Meteorological Society, Georgia, USA.
  • 8Doviak, R.J., Zrnic, D.S., 2006. Doppler Radar and Weather Observations. Dover Publications Inc., Mineola, New York, p.562.
  • 9Fang, M., Doviak, R.J., Melnikov, V., 2004. Spectrum width measured by the WSR-88D radar: Error sources and sta- tistics of various weather phenomena. Journal of At- mospheric and Oceanic Technology, 21(6):888-904. [doi:10. 1175/1520-0426(2004)021 <0888:SWMBWE>2.0. C0;2].
  • 10Frehlich, R.G., Meillier, Y., Jensen, M.L., Balsley, B., Shar- man, R., 2006. Measurements of boundary layer profiles in an urban environment. Journal of Applied Meteorology and Climatology, 45(6):821-837. [doi:10.1175/ JAM2368.1 ].

共引文献2

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部