期刊文献+

四阶循环群作用下四元组的轨道分类

Orbit Classification of Quadruples Under the Action of Cyclic Group of Order Four
原文传递
导出
摘要 组合数学中的组合设计及其大集问题的研究有着悠久的历史,其在计算机科学、编码论等领域都有广泛的应用.由于条件复杂,组合设计大集问题被公认为组合设计中的难点,长期以来进展缓慢.近年来,在新的方法和理论推动下,组合设计大集问题的研究呈现了很好的态势.研究组合设计大集的首要问题是将区组进行轨道分类.本文研究了n元集X中四元组(即4子集)集合在X上对称群S_n的四阶循环子群作用下的轨道分类问题,得到了四元组的轨道计数以及轨道代表系的一种取法,并给出了轨道分类的一些应用. Combinatorial designs and their large sets have a long history and a wide range of applications in computer science and coding theory, etc. The large set problem is unanimously recognized as the difficulties in design field due to its complex conditions. The related research work had been quite slow in making progress for a long period of time due to its sophistication. Being motivated by some new methods and techniques, the research in the large set problem has taken on a promising posture in recent years. Orbit classification is the first step for constructing large sets. In this paper, we research the problem of orbit classification of quadruples on an n-set X, under the action of cyclic group of order four, which is a subgroup of symmetric group Sn on set X. The orbit enumeration and an orbit representative system are obtained. We also give some applications of this orbit classification.
出处 《应用数学学报》 CSCD 北大核心 2014年第6期1034-1041,共8页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金项目(10901051 11201143) 中央高校基本科研业务费专项资金项目(13MS38 2014ZZD10) 国家留学基金委项目 北京市教委共建项目资助
关键词 组合设计 大集 四元组 轨道 代表元 combinatorial design large set quadruple orbit representative element
  • 相关文献

参考文献9

  • 1Lu J Q. On large sets of disjoint Steiner triple systems I-III. J. Combin. Theory Ser. A, 1983, 34: 142-182.
  • 2Lu J Q. On large sets of disjoint Steiner triple systems IV-VI. J. Combin. Theory Ser. A, 1984, 37 136-192.
  • 3Teirlinck L. A completion of Lu's determination of the spectrum for large sets of disjoint Steiner triple systems. J. Combin. Theory Ser. A, 1991, 57:302 305.
  • 4Chouinard Leo G. Artitions of the 4-subsets of a 13-set into disjoint projective planes. Discrete Math., 1983, 45:297-300.
  • 5Mathon R A. Searching for spreads and packings, in Geometry, Combinatorial Designs and related Structures. Hirschfeld J W P, Magliveras S S and Resmini M J De, eds. Cambridge: Cambridge Univ. Press, 1997, 161- 176.
  • 6Chang YX, Zhou J L. Large sets of Kirkman triple systems and related designs. J. Combin. Theory Set. A, 2013, 120(3): 649-670.
  • 7Zhou J L, Chang YX. New results on large sets of Kirkman triple systems. Des. Codes Cryptogr., 2010, 55(I): 1-7.
  • 8康庆德.组合数学笔记.北京:科学出版社,2009.
  • 9Colbourn C J, Dinitz J H. CRC Handbook of Combinatorial Designs (Second Edition). Boca Raton: CRC Press Inc., 2006.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部