期刊文献+

求解非负矩阵分解的修正非单调投影梯度法 被引量:1

Modified Non-monotonic Projection Gradient Method for Non-negative Matrix Factorization
原文传递
导出
摘要 非负矩阵分解(NMF)是一新的特征提取方法.十几年来,NMF备受关注,并且被成功的应用于许多数据分析问题.非负矩阵分解目前的算法大部分是基于乘性算法,交替的最小二乘算法.然而,这些算法的收敛性都不能得到保证,这归咎于聚点的存在性不清楚.本文提出了一修正的非单调投影梯度算法求解NMF.该方法能保证投影梯度算法产生的点列至少有一聚点.数据实验表明该方法要比乘性算法好. Non-negative matrix factorization (NMF) is a new feature extraction method. NMF has attracted much attention for over a decade and has been successfully applied to mtmerous data analysis problems. Most of the current algorithms are based on multiplicative iterative algorithms and alternating least squares algorithms. However, convergence analysis of these methods can not be guaranteed, this is attributed to the existence of accumulation point is not clear. In this paper, we propose a modified non-monotonic projection gradient method for NMF. This method can ensure that the sequence generated by projection gradient method has at least one limit point. Experimental results also show that our algorithm tends to converge to better solutions than the popular multiplicative update-based algorithms.
出处 《应用数学学报》 CSCD 北大核心 2014年第6期1068-1076,共9页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(No.11361018 61362021) 广西自然科学基金(No.PF141259) 广西杰出青年基金(No.2012GXSFFA060003) 广西教育厅重点(No.LD14075B)资助项目
关键词 非负矩阵分解 修正的投影梯度法 非单调技巧 non-negative Inatrix factorization modified projection gradient non-monotonic technique
  • 相关文献

参考文献27

  • 1Paul Pauca V, Farial Shahnaz, Michael W. Berry, Robert J Plemmons. Text mining using nonnegative matrix fa:torization. In: Proceedings of the Fourth SIAM International Conference on Data Mining, 2004.
  • 2Philip M Kim, Bruce Tidor. Subsystem identi?cation through dimensionality reduction of large-scale gene expression data. Genome Research, 2003, 13:1706- 1718.
  • 3Brunet JP, Tamayo P, Golub TR, Mesirov JP. Metagenes and molecular pattern discovery using matrix factorization. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101:4164-4169.
  • 4Hyunsoo Kim, Haesun Park. Sparse non-negative matrix factorizations via alternating nonnegativity= constrained least squares for microarray data analysis. Bioinformatics, 2007, 23:1495-1502.
  • 5Gao Y, Church G. Improving molecular cancer class discovery through sparse non=negative matrix factorizatiom Bioinformaties, 2005, 21:3970 -3975.
  • 6Richardson, William Hadley. Bayesiambased iterative method of image restoration. Journal of the Optical Society of America, 1972, 62:55-59.
  • 7Cho Yong-Choon, Choi Seungjin. Nonnegative features of spectro-temporal sounds for classification. Pattern Recognition Letters, 2005, 26:1327-1336.
  • 8Jean-Philippe Brunet, Pablo Tamayo, Todd R. Golub, Jill P. Mesirov. Metagenes and molecular pattern discovery using matrix factorization. PNAS, 2004, 101:4164-4169.
  • 9Nini Rao, Simon J Shepherd. Extracting characteristic patterns from genome wide expression data by non-negative matrix factorization. In: Computational Systems Bioinformatics Conference, 2004.
  • 10Jong-Hoon Ahn, Sang-Ki Kim, Jong-Hoon Oh, Seungjin Choi. Multiple nonnegativematrix factoriza- tion of dynamic PET images. In ACCV, 2004.

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部