期刊文献+

抑郁症患者脑结构网络效率属性及与疾病严重程度的相关分析 被引量:5

The efficiency of the brain structural networks and its relationship with the severity of disease in depression
原文传递
导出
摘要 目的 探讨抑郁症患者与健康对照者脑结构的网络效率及节点效率属性的异同,分析抑郁症患者大脑全局信息处理模式和脑区间信息整合效率的改变,及其与疾病严重程度的关系.方法 对27例抑郁症患者(抑郁症组)和36名健康对照者(对照组)进行弥散张量成像扫描,利用解剖学自动标记模板将整个大脑划分为90个区域,同时对全脑进行确定性纤维追踪,构建脑结构二值化网络.并对所得抑郁症组与对照组脑结构网络的效率属性值进行双样本t检验.结果 (1)2组脑网络分别与相匹配的随机网络比较:网络全局效率均与随机网络相似;网络局部效率均大于随机网络.(2)抑郁症组网络全局效率(0.86±0.01)较对照组(0.87±0.01)下降(t=-2.31;P =0.02).(3)抑郁症组节点全局效率属性值较对照组(右侧额上回眶部:0.41±0.04与0.44±0.02;左侧颞中回颞极:0.31 ±0.02与0.33±0.03)下降(t=-3.52、-3.84;P=0.0008、0.0003;通过多重校正).(4)抑郁症组右侧额上回眶部全局效率属性值与HAMD17总分呈负相关(r=-0.46,P=0.02).结论 抑郁症患者与健康人大脑都具有高效经济的“小世界”式的信息处理模式.抑郁症患者脑区间信息整合的能力已受损,且与疾病严重程度呈负相关. Objective To explore the differences of the efficiency of the networks and the nodes between the depression and the healthy,the changes of the model of information processing across the whole brain and the efficiency of information integrating across brain regions of the depression and the relationship between the global efficiency of the nodes and the severity of the disease.Methods The diffusion tensor imaging data were obtained from 27 depressive patients and 36 healthy controls.The whole cerebral cortex was divided into 90 regions by the anatomical tabel map.Fiber tracking was performed in the whole cerebral cortex of each subject to reconstruct white matter tracts of the brain using the fiber assignment by continuous tracking algorithm.And then the brain structural binary networks were constructed using the complex network theory.The efficiency of the brain structural networks of the depression and healthy were examined by two sample t-tests.Results The brain structural networks of both the depression and the healthy exhibited a higher local efficiency and a similar global efficiency when compared with the matched random networks.But the global efficiency of the brain structural networks of the depression (0.86 ± 0.01) decreased significantly when compared with the healthy (0.87 ± 0.01 ; t =-2.31 ; P =0.02).And the global efficiency of the nodes in the networks of depression (the right superior frontal gyrus (orbital part):0.41 ± 0.04 ; the left middle temporal gyrus (temporal pole):0.31 ± 0.02) decreased significantly when compared with the healthy (0.44 ± 0.02,0.33 ± 0.03 ; t =-3.52,-3.84 ; P =0.0008,0.0003,survived critical false discorery rate threshold for multiple comparisons).Significant negative correlation was found between the global efficiency of the right superior frontal gyrus (orbital part) and the total scores of HAMD-17 (r =-0.46,P =0.02).Conclusion Efficient small-world properties when processing information across the whole brain could exhibit in both the depressive patients and the healthy persons.But the efficiency of information integrating across brain regions may be decreased in the depressive patients and be negatively related with the severity of depression.
出处 《中华精神科杂志》 CAS CSCD 北大核心 2014年第6期321-325,共5页 Chinese Journal of Psychiatry
基金 国家自然科学基金资助项目(81371522,61372032) 江苏省临床医学科技专项(BL2012052,BL2014009) 江苏省自然科学基金(BK2012740,BK20131074) 国家临床重点专科建设项目(卫生部医政司2011-873) 江苏省医学重点学科(江苏省卫生厅2011-12)
关键词 抑郁症 磁共振成像 弥散 脑结构网络 效率属性 Depression Diffusion magnetic resonance imaging Brain structural network Efficiency
  • 相关文献

参考文献26

  • 1Wang Q,Su TP,Zhou Y,et al.Anatomical insights into disrupted small-world networks in schizophrenia[J].Neuroimage,2012,59:1085-1093.
  • 2Wang J,Zuo X,Dai Z,et al.Disrupted functional brain connectome in individuals at risk for Alzheimer's disease[J].Biol Psychiatry,2013,73:472-481.
  • 3Cao Q,Shu N,An L,et al.Probabilistic diffusion tractography and graph theory analysis reveal abnormal white matter structural connectivity networks in drug-naive boys with attention deficit/hyperactivity disorder[J].J Neurosci,2013,33:10676-10687.
  • 4He Y,Dagher A,Chen Z,et al.Impaired small-world efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load[J].Brain,2009,132:3366-3379.
  • 5Frodl T,Bokde AL,Scheuerecker J,et al.Functional connectivity bias of the orbitofrontal cortex in drug-free patients with major depression[J].Biol Psychiatry,2010,67:161-167.
  • 6Wagner G,Koch K,Schachtzabel C,et al.Structural brain alterations in patients with major depressive disorder and high risk for suicide:evidence for a distinct neurobiological entity[J]?Neuroimage,2011,54:1607-1614.
  • 7Zhang J,Wang J,Wu Q,et al.Disrupted brain connectivity networks in drug-naive,first-episode major depressive disorder[J].Biol Psychiatry,2011,70:334-342.
  • 8Singh MK,Kesler SR,Hadi Hosseini SM,et al.Anomalous gray matter structural networks in major depressive disorder[J].Biol Psychiatry,2013,74:777-785.
  • 9Rubinov M,Sporns O.Complex network measures of brain connectivity:uses and interpretations[J].Neuroimage,2010,52:1059-1069.
  • 10Zalesky A,Cocchi L,Fomito A,et al.Connectivity differences in brain networks[J].Neuroimage,2012,60:1055-1062.

二级参考文献40

  • 1姚志剑,杜经纶,谢世平,滕皋军,刘文,曹燕翔,刘海燕,王丽.动态面部表情情绪不明确识别的fMRI研究[J].中国行为医学科学,2007,16(8):685-687. 被引量:5
  • 2Ishai A,Schmidt CF,Boesiger P.Face perception is mediated by a distributed cortical network.Brain Res Bull,2005,67 (1-2):87-93.
  • 3Martínez AM.Matching expression variant faces.Vision Res,2003,43:1047-1060.
  • 4Heller W,Nitschke JB,Lindsay DL.Neuropsychological correlates of arousal in self-reported emotion.Cogn Emot,1997,11:383-402.
  • 5Meadows ME,Kaplan RF.Dissociation of autonomic and subjective responses to emotional slides in right hemisphere damaged patients.Neuropsychologia,1994,32:847-856.
  • 6Posner MI,Petersen SE.The attention system of the human brain.Annu Rev Neurosci,1990,13:25-42.
  • 7Güntekin B,Basar E.Facial affect manifested by multiple oscillations.Int J Psychophysiol,2009,71:31-36.
  • 8Todorov A,Engell AD.The role of the amygdale in implicit evaluation of emotionally neutral faces.Soc Cogn Affect Neurosci,2008,3:303-312.
  • 9Frodl T,Meisenzahl EM,Zetzsche T,et al.Hippocampal changes in patients with a first episode of major depression.Am J Psychiatry,2002,159:1112-1118.
  • 10Parker JD,Taylor GJ,Bagby RM.Alexithymia and the recognition of facial expressions of emotion.Psychother Psychosom,1993,59(3-4):197-202.

共引文献10

同被引文献96

  • 1Cardoso de Almeida JR, Phillips ML. Distinguishing between unipolar depression and bipolar depression: current and future clinical and neuroimaging perspectives[J].Biol Psychiatry, 2013, 73(2):111-118.doi:10.1016/j.biopsych.2012.06.010.
  • 2Grotegerd D, Suslow T, Bauer J, et al. Discriminating unipolar and bipolar depression by means of fMRI and pattern classification: a pilot study[J].Eur Arch Psychiatry Clin Neurosci, 2013, 263(2):l 19-131.doi:10.1007/ s00406-012-0329-4.
  • 3Ballmaier M, Toga AW, Blanton RE, et al. Anterior cingulate, gyrus rectus, and orbitofrontal abnormalities in elderly depressed patients: an MRI-based parcellation of the prefrontal cortex[J].Am J Psychiatry., 2004, 161(1):99-108.
  • 4Korgaonkar MS, Grieve SM, Etkin A, et al. Using standardized fMRI protocols to identify patterns of prefrontal circuit dysregulation that are common and specific to cognitive and emotional tasks first wave results from in major depressive disorder: the iSPOT-D study[J]. Neuropsychopharmaeology, 2013, 38(5):863-871.doi:10.1038/ npp.2012.252.
  • 5Arnone D, Melntosh AM, Ebmeier KP, et al. Magnetic resonance imaging studies in unipolar depression: systematic review and meta-regression analyses[J].Eur Neuropsychopharmacol, 2012,22( 1 ): 1 - 16.doi: 10.1016/j .euroneuro. 2011.05.003.
  • 6Gong Q, He Y. Depression, neuroimaging and connectomics: a selective overview[J].Biol Psychiatry, 2015, 77(3):223-235. doi: 10.1016/j.biopsych.2014.08.009.
  • 7Michael B, Spitzer RL, Gibbon M, et al. Structured clinical interview for DSM-IV-TR axis I disorders, research version, patient edition (SCID-I/P) [M]. New York: Biometrics Research, New York State Psychiatric Institute, 2002.
  • 8American Psychological Association. Diagnostic and statistical manual of mental disorders- 1V-TR[M]. Washington, DC: American Psychological Association, 2000.
  • 9Spitzer M, Robert L, Gibbon M, et al. Structured clinical interview for DSM-IV-TR axis I disorders, research version, non-patient edition (SCID-I/NP)[M]. New York: Biometrics Research, New York State Psychiatric Institute, 2002.
  • 10Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations[J].Neuroimage, 2010, 52(3): 1059-1069.doi: 10.1016/j.neuroimage.2009.10.003.

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部