期刊文献+

Qnil-半交换环及其扩张 被引量:1

Qnil-semicommutative Rings and Their Extensions
下载PDF
导出
摘要 引进了qnil-半交换环的概念,推广了半交换环.证明了:二级三角矩阵环(SM0T)是qnil-半交换环当且仅当环S,T都是qnil-半交换环;环R上的幂级数环R[[x]]是qnil-半交换环当且仅当R是qnil-半交换环. We extend semmicommutative rings and define a new one called qnil-semicommutative ring.It is proved that the triangular matrix ring of order two (SM0T) is qnil-semicommutative if and only if Sand Tare qnil-semicommutative;R[[x]],the power series ring of R,is qnil-semicommutative if and only if so is R.
作者 郭世乐
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第6期765-768,共4页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(11101084)
关键词 半交换环 qnil-半交换环 二级三角矩阵环 幂级数环 semicommutative rings qnil-semicommutative rings triangular matrix rings of order two power series rings
  • 相关文献

参考文献8

  • 1Shin G. Prime ideals and sheaf representation of a pseudo symmetric ring[J]. Trans Amer Math Soe, 1973, 184: 43-60.
  • 2Du X N. On semicommutative rings and strongly regular rings[J]. J Math Res Exp,1994,14(1) :57-60.
  • 3Liang L, Wang L M, Liu Z K. On a generaliation of semi-commutative rings [J]. Taiw J of Math, 2007, 11 (5) : 1359-1368.
  • 4Chen W X. On nil-semicommutative rings[J]. Thai J of Math,2011,9(1) :39-47.
  • 5Harte R E. On quasinilpotents in rings[J]. Panamer Math J, 1991(1) : 10-16.
  • 6Koliha J J,Patricio P. Elements of rings with equal spec- tral idempotents[J]. J Austral Math Soc, 2002,72 (1) : 137-152.
  • 7Koliha J J. A generalized Drazin inverse [J]. Glasgow Math J, 1996,38 .. 367-381.
  • 8Krylov P A, Tuganbaev A A. Modules over formal matrix rings[J]. Journal of Mathematical Sciences, 2010,171 ( 2 ) : 248-295.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部