摘要
传统PMV指标计算方法具有复杂度高、延时大的缺陷.根据PMV参数的时变特征,利用Elman神经网络建立PMV参数预测模型,实现对热舒适度的在线监测.模型以温度、相对湿度、风速和平均辐射温度为输入,以PMV指标为预测输出,具有良好的泛化能力.仿真结果表明该方法的预测结果与数值计算的结果相近,同时训练后神经网络的计算时间优于传统方法的计算时间.
The traditional numerical calculation method of PMV has the defects of high computational complexity and large time delay.In this paper,according to the time-varying characteristic of PMV index,PMV prediction model is established based on Elman neural network and the on-line monitoring of thermal comfort is realized.The temperature,air velocity,relative humidity and mean radiant temperature are selected as the inputs of the prediction model and the PMV value is assigned as output.The prediction model has good generalization capacity.Simulation results show that the predictive results of the proposed method are in agreement with the results of numerical calculation;meanwhile the computation time of the proposed method is superior to that of the traditional method after the Elman neural network is trained sufficiently.
出处
《吉首大学学报(自然科学版)》
CAS
2014年第6期64-69,共6页
Journal of Jishou University(Natural Sciences Edition)
基金
湖南省教育厅科学研究项目(12C0241)
湖南省大学生研究性学习和创新性实验计划项目(湘教通[2013]191号74)
湖南师范大学教学改革研究项目(121-0683)
湖南师范大学双语教学课程建设项目(043-024)
关键词
PMV
热舒适度
ELMAN神经网络
预测模型
predicted mean vote
thermal comfort level
Elman neural network
prediction model