期刊文献+

云存储系统中基于分簇的数据复制策略 被引量:3

A cluster based data replication strategy in cloud storage systems
下载PDF
导出
摘要 云存储技术已经成为当前互联网中共享存储和数据服务的基础技术,云存储系统普遍利用数据复制来提高数据可用性,增强系统容错能力和改善系统性能。提出了一种云存储系统中基于分簇的数据复制策略,该策略包括产生数据复制的时机判断、复制副本数量的决定以及如何放置复制所产生的数据副本。在放置数据副本时,设计了一种基于分簇的负载均衡副本放置方法。相关的仿真实验表明,提出的基于分簇的负载均衡副本放置方法是可行的,并且具有良好的性能。 Currently, cloud storage becomes one of the fundamental technologies for information sha- ring and data service in the Internet. Data replication is widely used in cloud storage systems to improve the data availability, enhance the fault-tolerant capability and ameliorate improve the system perform- anee. A cluster-based data replication strategy in cloud storage systems is proposed, which includes when to replicate data, the number of its replicas and where these replicas should be placed. In the repli- ca placement stage, a Cluster Based Replication Placement (CBRP) method with load balance in cloud storage systems is proposed. Experiments demonstrate that the proposed method is practical and with good performance.
出处 《计算机工程与科学》 CSCD 北大核心 2014年第12期2296-2304,共9页 Computer Engineering & Science
基金 国家自然科学基金资助项目(61202354) 江苏省科技型企业技术创新资金项目(BC2014195)
关键词 云存储系统 数据复制 分簇 副本放置 cloud storage system data replication cluster replica placement
  • 相关文献

参考文献2

二级参考文献30

  • 1Sims K. IBM introduces ready-to-use cloud computing collaboration services get clients started with cloud computing. 2007. http://www-03.ibm.com/press/us/en/pressrelease/22613.wss
  • 2Boss G, Malladi P, Quan D, Legregni L, Hall H. Cloud computing. IBM White Paper, 2007. http://download.boulder.ibm.com/ ibmdl/pub/software/dw/wes/hipods/Cloud_computing_wp_final_8Oct.pdf
  • 3Zhang YX, Zhou YZ. 4VP+: A novel meta OS approach for streaming programs in ubiquitous computing. In: Proc. of IEEE the 21st Int'l Conf. on Advanced Information Networking and Applications (AINA 2007). Los Alamitos: IEEE Computer Society, 2007. 394-403.
  • 4Zhang YX, Zhou YZ. Transparent Computing: A new paradigm for pervasive computing. In: Ma JH, Jin H, Yang LT, Tsai JJP, eds. Proc. of the 3rd Int'l Conf. on Ubiquitous Intelligence and Computing (UIC 2006). Berlin, Heidelberg: Springer-Verlag, 2006. 1-11.
  • 5Barroso LA, Dean J, Holzle U. Web search for a planet: The Google cluster architecture. IEEE Micro, 2003,23(2):22-28.
  • 6Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks, 1998,30(1-7): 107-117.
  • 7Ghemawat S, Gobioff H, Leung ST. The Google file system. In: Proc. of the 19th ACM Symp. on Operating Systems Principles. New York: ACM Press, 2003.29-43.
  • 8Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. In: Proc. of the 6th Symp. on Operating System Design and Implementation. Berkeley: USENIX Association, 2004. 137-150.
  • 9Burrows M. The chubby lock service for loosely-coupled distributed systems. In: Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2006. 335-350.
  • 10Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE. Bigtable: A distributed storage system for structured data. In: Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2006. 205-218.

共引文献1325

同被引文献11

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部